Computer vision for driving support systems: automatic traffic signs detection and proximity analysis

Detalhes bibliográficos
Autor(a) principal: Aldwihe, Ramez
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/23063
Resumo: The future of the automotive industry in the coming years will depend heavily on artificial intelligence techniques. This thesis proposes a technique for automatic detection and recognition of traffic signs from images, to provide a driver alert system. The system developed in this work includes algorithms to detect, classify and recognize traffic signs, based on a set belonging to a German database. The main signs are circular and triangular, which have two different colors, namely red and blue. Several examples of images, in different scenarios, are taken from the German roads, and are used to test the effectiveness of the proposed system. Traffic signs are detected by analyzing the color and shape information. The detected signs are classified accordingtotheCNNMachineLearningtechnique,andcanbeclassifiedinto43differentclassesaccording to previous classification already existing in the reference database. After detecting the presence of a traffic signs, the traffic signs is detected by comparing the traffic signs detected in the images with the signs in the database. The overall recognition accuracy is 75 % and processing is normally done in 1.6 seconds. This project is implemented with the OpenCV tool and the Python programming language; Sumário: Visão Computacional aplicada a sistemas de apoio à condução: deteção automática de sinalização de trânsito e análise de proximidade O futuro da indústria automóvel nos próximos anos irá depender fortemente das técnicas de inteligência artificial. Esta tese propõe uma técnica para a deteção automática e o reconhecimento de sinais de trânsito a partir de imagens, para proporcionar um sistema de alerta ao condutor. O sistema desenvolvido neste trabalho inclui algoritmos para detetar, classificar e reconhecer sinais de trânsito, nomeadamente um conjunto pertencente a uma base de dados alemã. Osprincipaissinaissãocircularesetriangulares,osquaistêmduascoresdiferentes,nomeadamentevermelho e azul. Vários exemplos de imagens, em diferentes cenários, são tirados das estradas alemãs, e são usados para testar a eficácia do sistema proposto. Os sinais de trânsito são detetados analisando a informação de cor e forma. Os sinais detetados são classificadosapartirdatécnicaCNNMachineLearning, podendoserclassificadosem43classesdiferentes, de acordo com classificação prévia já existente na base de dados de referência. Após deteção da presença de um sinal de trânsito, o reconhecimento do mesmo é feito comparando os sinais de trânsito detetados nas imagens com os sinais existentes na base de dados. Oacertodoreconhecimentogeraléde75%eoprocessamentoéfeitonormalmenteem1.6segundos. Este projeto for implementado com a ferramenta OpenCV e a linguagem de programação Python.
id RCAP_e8f328ea18d82c4bf70d1ff4aee189c5
oai_identifier_str oai:dspace.uevora.pt:10174/23063
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Computer vision for driving support systems: automatic traffic signs detection and proximity analysisTraffic sign recognition (TSR)Image processingComputer visionCNNThe future of the automotive industry in the coming years will depend heavily on artificial intelligence techniques. This thesis proposes a technique for automatic detection and recognition of traffic signs from images, to provide a driver alert system. The system developed in this work includes algorithms to detect, classify and recognize traffic signs, based on a set belonging to a German database. The main signs are circular and triangular, which have two different colors, namely red and blue. Several examples of images, in different scenarios, are taken from the German roads, and are used to test the effectiveness of the proposed system. Traffic signs are detected by analyzing the color and shape information. The detected signs are classified accordingtotheCNNMachineLearningtechnique,andcanbeclassifiedinto43differentclassesaccording to previous classification already existing in the reference database. After detecting the presence of a traffic signs, the traffic signs is detected by comparing the traffic signs detected in the images with the signs in the database. The overall recognition accuracy is 75 % and processing is normally done in 1.6 seconds. This project is implemented with the OpenCV tool and the Python programming language; Sumário: Visão Computacional aplicada a sistemas de apoio à condução: deteção automática de sinalização de trânsito e análise de proximidade O futuro da indústria automóvel nos próximos anos irá depender fortemente das técnicas de inteligência artificial. Esta tese propõe uma técnica para a deteção automática e o reconhecimento de sinais de trânsito a partir de imagens, para proporcionar um sistema de alerta ao condutor. O sistema desenvolvido neste trabalho inclui algoritmos para detetar, classificar e reconhecer sinais de trânsito, nomeadamente um conjunto pertencente a uma base de dados alemã. Osprincipaissinaissãocircularesetriangulares,osquaistêmduascoresdiferentes,nomeadamentevermelho e azul. Vários exemplos de imagens, em diferentes cenários, são tirados das estradas alemãs, e são usados para testar a eficácia do sistema proposto. Os sinais de trânsito são detetados analisando a informação de cor e forma. Os sinais detetados são classificadosapartirdatécnicaCNNMachineLearning, podendoserclassificadosem43classesdiferentes, de acordo com classificação prévia já existente na base de dados de referência. Após deteção da presença de um sinal de trânsito, o reconhecimento do mesmo é feito comparando os sinais de trânsito detetados nas imagens com os sinais existentes na base de dados. Oacertodoreconhecimentogeraléde75%eoprocessamentoéfeitonormalmenteem1.6segundos. Este projeto for implementado com a ferramenta OpenCV e a linguagem de programação Python.Universidade de Évora2018-03-26T13:52:07Z2018-03-262018-01-15T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://hdl.handle.net/10174/23063http://hdl.handle.net/10174/23063TID:201887002porDepartamento de Engenharia Informáticaeng.ramez87@hotmail.com498Aldwihe, Ramezinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:14:52Zoai:dspace.uevora.pt:10174/23063Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:13:56.988564Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Computer vision for driving support systems: automatic traffic signs detection and proximity analysis
title Computer vision for driving support systems: automatic traffic signs detection and proximity analysis
spellingShingle Computer vision for driving support systems: automatic traffic signs detection and proximity analysis
Aldwihe, Ramez
Traffic sign recognition (TSR)
Image processing
Computer vision
CNN
title_short Computer vision for driving support systems: automatic traffic signs detection and proximity analysis
title_full Computer vision for driving support systems: automatic traffic signs detection and proximity analysis
title_fullStr Computer vision for driving support systems: automatic traffic signs detection and proximity analysis
title_full_unstemmed Computer vision for driving support systems: automatic traffic signs detection and proximity analysis
title_sort Computer vision for driving support systems: automatic traffic signs detection and proximity analysis
author Aldwihe, Ramez
author_facet Aldwihe, Ramez
author_role author
dc.contributor.author.fl_str_mv Aldwihe, Ramez
dc.subject.por.fl_str_mv Traffic sign recognition (TSR)
Image processing
Computer vision
CNN
topic Traffic sign recognition (TSR)
Image processing
Computer vision
CNN
description The future of the automotive industry in the coming years will depend heavily on artificial intelligence techniques. This thesis proposes a technique for automatic detection and recognition of traffic signs from images, to provide a driver alert system. The system developed in this work includes algorithms to detect, classify and recognize traffic signs, based on a set belonging to a German database. The main signs are circular and triangular, which have two different colors, namely red and blue. Several examples of images, in different scenarios, are taken from the German roads, and are used to test the effectiveness of the proposed system. Traffic signs are detected by analyzing the color and shape information. The detected signs are classified accordingtotheCNNMachineLearningtechnique,andcanbeclassifiedinto43differentclassesaccording to previous classification already existing in the reference database. After detecting the presence of a traffic signs, the traffic signs is detected by comparing the traffic signs detected in the images with the signs in the database. The overall recognition accuracy is 75 % and processing is normally done in 1.6 seconds. This project is implemented with the OpenCV tool and the Python programming language; Sumário: Visão Computacional aplicada a sistemas de apoio à condução: deteção automática de sinalização de trânsito e análise de proximidade O futuro da indústria automóvel nos próximos anos irá depender fortemente das técnicas de inteligência artificial. Esta tese propõe uma técnica para a deteção automática e o reconhecimento de sinais de trânsito a partir de imagens, para proporcionar um sistema de alerta ao condutor. O sistema desenvolvido neste trabalho inclui algoritmos para detetar, classificar e reconhecer sinais de trânsito, nomeadamente um conjunto pertencente a uma base de dados alemã. Osprincipaissinaissãocircularesetriangulares,osquaistêmduascoresdiferentes,nomeadamentevermelho e azul. Vários exemplos de imagens, em diferentes cenários, são tirados das estradas alemãs, e são usados para testar a eficácia do sistema proposto. Os sinais de trânsito são detetados analisando a informação de cor e forma. Os sinais detetados são classificadosapartirdatécnicaCNNMachineLearning, podendoserclassificadosem43classesdiferentes, de acordo com classificação prévia já existente na base de dados de referência. Após deteção da presença de um sinal de trânsito, o reconhecimento do mesmo é feito comparando os sinais de trânsito detetados nas imagens com os sinais existentes na base de dados. Oacertodoreconhecimentogeraléde75%eoprocessamentoéfeitonormalmenteem1.6segundos. Este projeto for implementado com a ferramenta OpenCV e a linguagem de programação Python.
publishDate 2018
dc.date.none.fl_str_mv 2018-03-26T13:52:07Z
2018-03-26
2018-01-15T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/23063
http://hdl.handle.net/10174/23063
TID:201887002
url http://hdl.handle.net/10174/23063
identifier_str_mv TID:201887002
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv Departamento de Engenharia Informática
eng.ramez87@hotmail.com
498
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade de Évora
publisher.none.fl_str_mv Universidade de Évora
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136621247856640