Fake Content Detection in the Information Exponential Spreading Era
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/143465 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Information Systems and Technologies Management |
id |
RCAP_ebfa268b79ecef547489c8e9fa5d365d |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/143465 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Fake Content Detection in the Information Exponential Spreading EraData miningSentiment AnalysisMachine LearningFake ContentDissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Information Systems and Technologies ManagementRecent years brought an information access democratization, allowing people to access a huge amount of information and the ability to share it, in a way that it can easily reach millions of people in a very short time. This allows to have right and wrong uses of this capabilities, that in some cases can be used to spread malicious content to achieve some sort of goal. Several studies have been made regarding text mining and sentiment analysis, aiming to spot fake information and avoid misinformation spreading. The trustworthiness and veracity of the information that is accessible to people is getting increasingly important, and in some cases critical, and can be seen has a huge challenge for the current digital era. This problem might be addressed with the help of science and technology. One question that we can do to ourselves is: How do we guarantee that there is a correct use of information, and that people can trust in the veracity of it? Using mathematics and statistics, combined with machine learning classification and predictive algorithms, using the current computation power of information systems, can help minimize the problem, or at least spot the potential fake information. One suggests developing a research work that aims to reach a model for the prediction of a given text content is trustworthy. The results were promising reaching a predicting model with good performance.Henriques, Roberto André PereiraRUNFerreira, Fernando Henrique Gregório Paulos2022-09-05T13:42:12Z2022-07-062022-07-06T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/143465TID:203058283enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:21:47Zoai:run.unl.pt:10362/143465Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:50:56.993291Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Fake Content Detection in the Information Exponential Spreading Era |
title |
Fake Content Detection in the Information Exponential Spreading Era |
spellingShingle |
Fake Content Detection in the Information Exponential Spreading Era Ferreira, Fernando Henrique Gregório Paulos Data mining Sentiment Analysis Machine Learning Fake Content |
title_short |
Fake Content Detection in the Information Exponential Spreading Era |
title_full |
Fake Content Detection in the Information Exponential Spreading Era |
title_fullStr |
Fake Content Detection in the Information Exponential Spreading Era |
title_full_unstemmed |
Fake Content Detection in the Information Exponential Spreading Era |
title_sort |
Fake Content Detection in the Information Exponential Spreading Era |
author |
Ferreira, Fernando Henrique Gregório Paulos |
author_facet |
Ferreira, Fernando Henrique Gregório Paulos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Henriques, Roberto André Pereira RUN |
dc.contributor.author.fl_str_mv |
Ferreira, Fernando Henrique Gregório Paulos |
dc.subject.por.fl_str_mv |
Data mining Sentiment Analysis Machine Learning Fake Content |
topic |
Data mining Sentiment Analysis Machine Learning Fake Content |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Information Systems and Technologies Management |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09-05T13:42:12Z 2022-07-06 2022-07-06T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/143465 TID:203058283 |
url |
http://hdl.handle.net/10362/143465 |
identifier_str_mv |
TID:203058283 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138104614846464 |