Modelling causality in nonstationary variances with an application to carbon markets
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/87581 |
Resumo: | In this paper we propose a multivariate generalisation of the multiplicative decomposition of the volatility within the class of conditional correlation GARCH models. The GARCH variance equations are multiplicatively decomposed into a deterministic nonstationary component describing the long-run movements in volatility and a short-run dynamic component allowing for volatility spillover effects across markets or assets. The conditional correlations are assumed to be time-invariant in its simplest form or generalised into a flexible dynamic parameterisation. Parameters of the model are estimated equation-by-equation by maximum likelihood applying the maximisation by parts algorithm to the variance equations, and thereafter to the structure of conditional correlations. An empirical application using carbon markets data illustrates the usefulness of the model. Our results suggest that, after modelling the variance equations accordingly, we find evidence that the transmission mechanism of shocks persists which is supported by the presence of variance interactions robust to nonstationarity. |
id |
RCAP_fd705dd8bf476827289f8b29d35acf8c |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/87581 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Modelling causality in nonstationary variances with an application to carbon marketsVariance interactionsNonstationarityShort- and long-term volatilityLagrange multiplier testIn this paper we propose a multivariate generalisation of the multiplicative decomposition of the volatility within the class of conditional correlation GARCH models. The GARCH variance equations are multiplicatively decomposed into a deterministic nonstationary component describing the long-run movements in volatility and a short-run dynamic component allowing for volatility spillover effects across markets or assets. The conditional correlations are assumed to be time-invariant in its simplest form or generalised into a flexible dynamic parameterisation. Parameters of the model are estimated equation-by-equation by maximum likelihood applying the maximisation by parts algorithm to the variance equations, and thereafter to the structure of conditional correlations. An empirical application using carbon markets data illustrates the usefulness of the model. Our results suggest that, after modelling the variance equations accordingly, we find evidence that the transmission mechanism of shocks persists which is supported by the presence of variance interactions robust to nonstationarity.Universidade do Minho. Núcleo de Investigação em Políticas Económicas (NIPE)Universidade do MinhoMartins, SusanaAmado, Cristina20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/87581enghttps://nipe.eeg.uminho.pt/publicacoes-nipe/#documentos-de-trabalhoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-23T01:40:03Zoai:repositorium.sdum.uminho.pt:1822/87581Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:55:37.913584Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Modelling causality in nonstationary variances with an application to carbon markets |
title |
Modelling causality in nonstationary variances with an application to carbon markets |
spellingShingle |
Modelling causality in nonstationary variances with an application to carbon markets Martins, Susana Variance interactions Nonstationarity Short- and long-term volatility Lagrange multiplier test |
title_short |
Modelling causality in nonstationary variances with an application to carbon markets |
title_full |
Modelling causality in nonstationary variances with an application to carbon markets |
title_fullStr |
Modelling causality in nonstationary variances with an application to carbon markets |
title_full_unstemmed |
Modelling causality in nonstationary variances with an application to carbon markets |
title_sort |
Modelling causality in nonstationary variances with an application to carbon markets |
author |
Martins, Susana |
author_facet |
Martins, Susana Amado, Cristina |
author_role |
author |
author2 |
Amado, Cristina |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Martins, Susana Amado, Cristina |
dc.subject.por.fl_str_mv |
Variance interactions Nonstationarity Short- and long-term volatility Lagrange multiplier test |
topic |
Variance interactions Nonstationarity Short- and long-term volatility Lagrange multiplier test |
description |
In this paper we propose a multivariate generalisation of the multiplicative decomposition of the volatility within the class of conditional correlation GARCH models. The GARCH variance equations are multiplicatively decomposed into a deterministic nonstationary component describing the long-run movements in volatility and a short-run dynamic component allowing for volatility spillover effects across markets or assets. The conditional correlations are assumed to be time-invariant in its simplest form or generalised into a flexible dynamic parameterisation. Parameters of the model are estimated equation-by-equation by maximum likelihood applying the maximisation by parts algorithm to the variance equations, and thereafter to the structure of conditional correlations. An empirical application using carbon markets data illustrates the usefulness of the model. Our results suggest that, after modelling the variance equations accordingly, we find evidence that the transmission mechanism of shocks persists which is supported by the presence of variance interactions robust to nonstationarity. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 2023-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/87581 |
url |
https://hdl.handle.net/1822/87581 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://nipe.eeg.uminho.pt/publicacoes-nipe/#documentos-de-trabalho |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade do Minho. Núcleo de Investigação em Políticas Económicas (NIPE) |
publisher.none.fl_str_mv |
Universidade do Minho. Núcleo de Investigação em Políticas Económicas (NIPE) |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136442790707200 |