Analysis of consumer perception on greenwashing through NLP: Contributions to marketing strategy
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/30988 |
Resumo: | This dissertation addresses a critical literature gap by comprehensively analyzing consumer responses to greenwashing. Utilizing Natural Language Processing (NLP) distinguishes positive and negative reactions and identifies emotions like joy, sadness, and disgust. This research sheds light on consumer sentiments toward greenwashing, offering actionable insights for businesses to enhance marketing and prevent greenwashing perception. The literature review, guided by the PRISMA approach, concentrates on greenwashing, consumer behavior, and environmental communication. The selection of literature adhered to rigorous criteria sourced from Web of Science and Scopus databases, leading to the analysis and evaluation of 23 scientific articles. Following the CRISP-DM methodology, this dissertation collected data from Twitter, focusing on corporate tweets suspected of greenwashing. A comprehensive examination of responses to these tweets included considerations such as industry sector, claim presentation, praise type, and mentioned actions. Leveraging the BERT language model, responses were categorized based on sentiment and emotions. Various analyses were conducted, encompassing bivariate assessments, tag cloud visualizations, logistic regression, and chi-square tests. The results indicate that climate-related topics were not the primary concern for consumers. Negative sentiment was present in responses, but joy was also expressed. Compensation claims and net-zero terms had limited influence on sentiment. Substantive actions generated more positive responses. Some industry sectors, like Communication Services, Energy, Financial Services, and Industrial sectors, received notable negative responses. Corporate praise triggered stronger negative reactions than consumer praise. In conclusion, substantive action and consumer praise are more effective in cultivating positive reactions and mitigating greenwashing. |
id |
RCAP_fdb3663f524597e48eef844309f8813e |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/30988 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Analysis of consumer perception on greenwashing through NLP: Contributions to marketing strategySystematic literature reviewGreenwashingGreen marketingConsumer perceptionProcessamento de linguagem natural - -- NLP Natural language processingRevisão sistemática da literaturaMarketing verdePerceção do consumidorThis dissertation addresses a critical literature gap by comprehensively analyzing consumer responses to greenwashing. Utilizing Natural Language Processing (NLP) distinguishes positive and negative reactions and identifies emotions like joy, sadness, and disgust. This research sheds light on consumer sentiments toward greenwashing, offering actionable insights for businesses to enhance marketing and prevent greenwashing perception. The literature review, guided by the PRISMA approach, concentrates on greenwashing, consumer behavior, and environmental communication. The selection of literature adhered to rigorous criteria sourced from Web of Science and Scopus databases, leading to the analysis and evaluation of 23 scientific articles. Following the CRISP-DM methodology, this dissertation collected data from Twitter, focusing on corporate tweets suspected of greenwashing. A comprehensive examination of responses to these tweets included considerations such as industry sector, claim presentation, praise type, and mentioned actions. Leveraging the BERT language model, responses were categorized based on sentiment and emotions. Various analyses were conducted, encompassing bivariate assessments, tag cloud visualizations, logistic regression, and chi-square tests. The results indicate that climate-related topics were not the primary concern for consumers. Negative sentiment was present in responses, but joy was also expressed. Compensation claims and net-zero terms had limited influence on sentiment. Substantive actions generated more positive responses. Some industry sectors, like Communication Services, Energy, Financial Services, and Industrial sectors, received notable negative responses. Corporate praise triggered stronger negative reactions than consumer praise. In conclusion, substantive action and consumer praise are more effective in cultivating positive reactions and mitigating greenwashing.Esta dissertação aborda uma lacuna na literatura, analisando de forma abrangente as reações dos consumidores ao greenwashing. Utilizando o Processamento de Linguagem Natural, distingue reações positivas e negativas e identifica emoções como a alegria, a tristeza e o desgosto. Esta investigação lança luz sobre os sentimentos dos consumidores em relação ao greenwashing, oferecendo conhecimentos práticos às empresas para melhorar o marketing e evitar a perceção do greenwashing. A revisão da literatura, orientada pela abordagem PRISMA, concentra-se no greenwashing, no comportamento do consumidor e na comunicação ambiental. A seleção da literatura obedeceu a critérios rigorosos, provenientes das bases de dados Web of Science e Scopus, conduzindo à análise e avaliação de 23 artigos científicos. Seguindo a metodologia CRISP-DM, esta dissertação recolheu dados do Twitter, centrando-se em tweets de empresas suspeitas de greenwashing. Uma análise das respostas a estes tweets incluiu considerações como a indústria, a apresentação das alegações, o tipo de elogio e as ações mencionadas. Utilizando o modelo de linguagem BERT, as respostas foram categorizadas com base no sentimento e nas emoções. Foram efetuadas várias análises, incluindo avaliações bi-variadas, visualizações de nuvens de etiquetas, regressão logística e testes de qui-quadrado. Os resultados indicam que os temas relacionados com o clima não constituíam a principal preocupação dos consumidores. O sentimento negativo esteve presente nas respostas, mas também foi expressa alegria. As ações substanciais geraram respostas mais positivas. Em conclusão, a ação substantiva e o elogio ao consumidor são mais eficazes para cultivar reações positivas e mitigar o greenwashing.2024-02-09T19:35:16Z2023-11-03T00:00:00Z2023-11-032023-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/30988TID:203478452engMelo, Ricardo Filipe Salvador Pires deinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-11T01:17:58Zoai:repositorio.iscte-iul.pt:10071/30988Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:37:30.506302Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Analysis of consumer perception on greenwashing through NLP: Contributions to marketing strategy |
title |
Analysis of consumer perception on greenwashing through NLP: Contributions to marketing strategy |
spellingShingle |
Analysis of consumer perception on greenwashing through NLP: Contributions to marketing strategy Melo, Ricardo Filipe Salvador Pires de Systematic literature review Greenwashing Green marketing Consumer perception Processamento de linguagem natural - -- NLP Natural language processing Revisão sistemática da literatura Marketing verde Perceção do consumidor |
title_short |
Analysis of consumer perception on greenwashing through NLP: Contributions to marketing strategy |
title_full |
Analysis of consumer perception on greenwashing through NLP: Contributions to marketing strategy |
title_fullStr |
Analysis of consumer perception on greenwashing through NLP: Contributions to marketing strategy |
title_full_unstemmed |
Analysis of consumer perception on greenwashing through NLP: Contributions to marketing strategy |
title_sort |
Analysis of consumer perception on greenwashing through NLP: Contributions to marketing strategy |
author |
Melo, Ricardo Filipe Salvador Pires de |
author_facet |
Melo, Ricardo Filipe Salvador Pires de |
author_role |
author |
dc.contributor.author.fl_str_mv |
Melo, Ricardo Filipe Salvador Pires de |
dc.subject.por.fl_str_mv |
Systematic literature review Greenwashing Green marketing Consumer perception Processamento de linguagem natural - -- NLP Natural language processing Revisão sistemática da literatura Marketing verde Perceção do consumidor |
topic |
Systematic literature review Greenwashing Green marketing Consumer perception Processamento de linguagem natural - -- NLP Natural language processing Revisão sistemática da literatura Marketing verde Perceção do consumidor |
description |
This dissertation addresses a critical literature gap by comprehensively analyzing consumer responses to greenwashing. Utilizing Natural Language Processing (NLP) distinguishes positive and negative reactions and identifies emotions like joy, sadness, and disgust. This research sheds light on consumer sentiments toward greenwashing, offering actionable insights for businesses to enhance marketing and prevent greenwashing perception. The literature review, guided by the PRISMA approach, concentrates on greenwashing, consumer behavior, and environmental communication. The selection of literature adhered to rigorous criteria sourced from Web of Science and Scopus databases, leading to the analysis and evaluation of 23 scientific articles. Following the CRISP-DM methodology, this dissertation collected data from Twitter, focusing on corporate tweets suspected of greenwashing. A comprehensive examination of responses to these tweets included considerations such as industry sector, claim presentation, praise type, and mentioned actions. Leveraging the BERT language model, responses were categorized based on sentiment and emotions. Various analyses were conducted, encompassing bivariate assessments, tag cloud visualizations, logistic regression, and chi-square tests. The results indicate that climate-related topics were not the primary concern for consumers. Negative sentiment was present in responses, but joy was also expressed. Compensation claims and net-zero terms had limited influence on sentiment. Substantive actions generated more positive responses. Some industry sectors, like Communication Services, Energy, Financial Services, and Industrial sectors, received notable negative responses. Corporate praise triggered stronger negative reactions than consumer praise. In conclusion, substantive action and consumer praise are more effective in cultivating positive reactions and mitigating greenwashing. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-11-03T00:00:00Z 2023-11-03 2023-09 2024-02-09T19:35:16Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/30988 TID:203478452 |
url |
http://hdl.handle.net/10071/30988 |
identifier_str_mv |
TID:203478452 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137426152620032 |