Analysis of consumer perception on greenwashing through NLP: Contributions to marketing strategy

Detalhes bibliográficos
Autor(a) principal: Melo, Ricardo Filipe Salvador Pires de
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/30988
Resumo: This dissertation addresses a critical literature gap by comprehensively analyzing consumer responses to greenwashing. Utilizing Natural Language Processing (NLP) distinguishes positive and negative reactions and identifies emotions like joy, sadness, and disgust. This research sheds light on consumer sentiments toward greenwashing, offering actionable insights for businesses to enhance marketing and prevent greenwashing perception. The literature review, guided by the PRISMA approach, concentrates on greenwashing, consumer behavior, and environmental communication. The selection of literature adhered to rigorous criteria sourced from Web of Science and Scopus databases, leading to the analysis and evaluation of 23 scientific articles. Following the CRISP-DM methodology, this dissertation collected data from Twitter, focusing on corporate tweets suspected of greenwashing. A comprehensive examination of responses to these tweets included considerations such as industry sector, claim presentation, praise type, and mentioned actions. Leveraging the BERT language model, responses were categorized based on sentiment and emotions. Various analyses were conducted, encompassing bivariate assessments, tag cloud visualizations, logistic regression, and chi-square tests. The results indicate that climate-related topics were not the primary concern for consumers. Negative sentiment was present in responses, but joy was also expressed. Compensation claims and net-zero terms had limited influence on sentiment. Substantive actions generated more positive responses. Some industry sectors, like Communication Services, Energy, Financial Services, and Industrial sectors, received notable negative responses. Corporate praise triggered stronger negative reactions than consumer praise. In conclusion, substantive action and consumer praise are more effective in cultivating positive reactions and mitigating greenwashing.
id RCAP_fdb3663f524597e48eef844309f8813e
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/30988
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Analysis of consumer perception on greenwashing through NLP: Contributions to marketing strategySystematic literature reviewGreenwashingGreen marketingConsumer perceptionProcessamento de linguagem natural - -- NLP Natural language processingRevisão sistemática da literaturaMarketing verdePerceção do consumidorThis dissertation addresses a critical literature gap by comprehensively analyzing consumer responses to greenwashing. Utilizing Natural Language Processing (NLP) distinguishes positive and negative reactions and identifies emotions like joy, sadness, and disgust. This research sheds light on consumer sentiments toward greenwashing, offering actionable insights for businesses to enhance marketing and prevent greenwashing perception. The literature review, guided by the PRISMA approach, concentrates on greenwashing, consumer behavior, and environmental communication. The selection of literature adhered to rigorous criteria sourced from Web of Science and Scopus databases, leading to the analysis and evaluation of 23 scientific articles. Following the CRISP-DM methodology, this dissertation collected data from Twitter, focusing on corporate tweets suspected of greenwashing. A comprehensive examination of responses to these tweets included considerations such as industry sector, claim presentation, praise type, and mentioned actions. Leveraging the BERT language model, responses were categorized based on sentiment and emotions. Various analyses were conducted, encompassing bivariate assessments, tag cloud visualizations, logistic regression, and chi-square tests. The results indicate that climate-related topics were not the primary concern for consumers. Negative sentiment was present in responses, but joy was also expressed. Compensation claims and net-zero terms had limited influence on sentiment. Substantive actions generated more positive responses. Some industry sectors, like Communication Services, Energy, Financial Services, and Industrial sectors, received notable negative responses. Corporate praise triggered stronger negative reactions than consumer praise. In conclusion, substantive action and consumer praise are more effective in cultivating positive reactions and mitigating greenwashing.Esta dissertação aborda uma lacuna na literatura, analisando de forma abrangente as reações dos consumidores ao greenwashing. Utilizando o Processamento de Linguagem Natural, distingue reações positivas e negativas e identifica emoções como a alegria, a tristeza e o desgosto. Esta investigação lança luz sobre os sentimentos dos consumidores em relação ao greenwashing, oferecendo conhecimentos práticos às empresas para melhorar o marketing e evitar a perceção do greenwashing. A revisão da literatura, orientada pela abordagem PRISMA, concentra-se no greenwashing, no comportamento do consumidor e na comunicação ambiental. A seleção da literatura obedeceu a critérios rigorosos, provenientes das bases de dados Web of Science e Scopus, conduzindo à análise e avaliação de 23 artigos científicos. Seguindo a metodologia CRISP-DM, esta dissertação recolheu dados do Twitter, centrando-se em tweets de empresas suspeitas de greenwashing. Uma análise das respostas a estes tweets incluiu considerações como a indústria, a apresentação das alegações, o tipo de elogio e as ações mencionadas. Utilizando o modelo de linguagem BERT, as respostas foram categorizadas com base no sentimento e nas emoções. Foram efetuadas várias análises, incluindo avaliações bi-variadas, visualizações de nuvens de etiquetas, regressão logística e testes de qui-quadrado. Os resultados indicam que os temas relacionados com o clima não constituíam a principal preocupação dos consumidores. O sentimento negativo esteve presente nas respostas, mas também foi expressa alegria. As ações substanciais geraram respostas mais positivas. Em conclusão, a ação substantiva e o elogio ao consumidor são mais eficazes para cultivar reações positivas e mitigar o greenwashing.2024-02-09T19:35:16Z2023-11-03T00:00:00Z2023-11-032023-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/30988TID:203478452engMelo, Ricardo Filipe Salvador Pires deinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-11T01:17:58Zoai:repositorio.iscte-iul.pt:10071/30988Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:37:30.506302Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Analysis of consumer perception on greenwashing through NLP: Contributions to marketing strategy
title Analysis of consumer perception on greenwashing through NLP: Contributions to marketing strategy
spellingShingle Analysis of consumer perception on greenwashing through NLP: Contributions to marketing strategy
Melo, Ricardo Filipe Salvador Pires de
Systematic literature review
Greenwashing
Green marketing
Consumer perception
Processamento de linguagem natural - -- NLP Natural language processing
Revisão sistemática da literatura
Marketing verde
Perceção do consumidor
title_short Analysis of consumer perception on greenwashing through NLP: Contributions to marketing strategy
title_full Analysis of consumer perception on greenwashing through NLP: Contributions to marketing strategy
title_fullStr Analysis of consumer perception on greenwashing through NLP: Contributions to marketing strategy
title_full_unstemmed Analysis of consumer perception on greenwashing through NLP: Contributions to marketing strategy
title_sort Analysis of consumer perception on greenwashing through NLP: Contributions to marketing strategy
author Melo, Ricardo Filipe Salvador Pires de
author_facet Melo, Ricardo Filipe Salvador Pires de
author_role author
dc.contributor.author.fl_str_mv Melo, Ricardo Filipe Salvador Pires de
dc.subject.por.fl_str_mv Systematic literature review
Greenwashing
Green marketing
Consumer perception
Processamento de linguagem natural - -- NLP Natural language processing
Revisão sistemática da literatura
Marketing verde
Perceção do consumidor
topic Systematic literature review
Greenwashing
Green marketing
Consumer perception
Processamento de linguagem natural - -- NLP Natural language processing
Revisão sistemática da literatura
Marketing verde
Perceção do consumidor
description This dissertation addresses a critical literature gap by comprehensively analyzing consumer responses to greenwashing. Utilizing Natural Language Processing (NLP) distinguishes positive and negative reactions and identifies emotions like joy, sadness, and disgust. This research sheds light on consumer sentiments toward greenwashing, offering actionable insights for businesses to enhance marketing and prevent greenwashing perception. The literature review, guided by the PRISMA approach, concentrates on greenwashing, consumer behavior, and environmental communication. The selection of literature adhered to rigorous criteria sourced from Web of Science and Scopus databases, leading to the analysis and evaluation of 23 scientific articles. Following the CRISP-DM methodology, this dissertation collected data from Twitter, focusing on corporate tweets suspected of greenwashing. A comprehensive examination of responses to these tweets included considerations such as industry sector, claim presentation, praise type, and mentioned actions. Leveraging the BERT language model, responses were categorized based on sentiment and emotions. Various analyses were conducted, encompassing bivariate assessments, tag cloud visualizations, logistic regression, and chi-square tests. The results indicate that climate-related topics were not the primary concern for consumers. Negative sentiment was present in responses, but joy was also expressed. Compensation claims and net-zero terms had limited influence on sentiment. Substantive actions generated more positive responses. Some industry sectors, like Communication Services, Energy, Financial Services, and Industrial sectors, received notable negative responses. Corporate praise triggered stronger negative reactions than consumer praise. In conclusion, substantive action and consumer praise are more effective in cultivating positive reactions and mitigating greenwashing.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-03T00:00:00Z
2023-11-03
2023-09
2024-02-09T19:35:16Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/30988
TID:203478452
url http://hdl.handle.net/10071/30988
identifier_str_mv TID:203478452
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137426152620032