Estimation of cross sections for molecule-cluster interactions by using artificial neural networks

Detalhes bibliográficos
Autor(a) principal: Böyükata,Mustafa
Data de Publicação: 2006
Outros Autores: Koçyigit,Yücel, Güvenç,Ziya B.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Physics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000500027
Resumo: The cross sections of D2(v,j)+Ni n(T), n = 19 and 20, collision systems have been estimated by using Artificial Neural Networks (ANNs). For training, previously determined cross section values via molecular dynamics simulation have been used. The performance of the ANNs for predicting any quantities in molecule-cluster interaction has been investigated. Effects of the temperature of the clusters and the rovibrational states of the molecule are analyzed. The results are in good agreement with previous studies.
id SBF-2_5cc5006670f8d11e2ecefabb12a781ce
oai_identifier_str oai:scielo:S0103-97332006000500027
network_acronym_str SBF-2
network_name_str Brazilian Journal of Physics
repository_id_str
spelling Estimation of cross sections for molecule-cluster interactions by using artificial neural networksArtificial Neural NetworksMolecular DynamicsClustersReactivityThe cross sections of D2(v,j)+Ni n(T), n = 19 and 20, collision systems have been estimated by using Artificial Neural Networks (ANNs). For training, previously determined cross section values via molecular dynamics simulation have been used. The performance of the ANNs for predicting any quantities in molecule-cluster interaction has been investigated. Effects of the temperature of the clusters and the rovibrational states of the molecule are analyzed. The results are in good agreement with previous studies.Sociedade Brasileira de Física2006-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000500027Brazilian Journal of Physics v.36 n.3a 2006reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332006000500027info:eu-repo/semantics/openAccessBöyükata,MustafaKoçyigit,YücelGüvenç,Ziya B.eng2006-10-23T00:00:00Zoai:scielo:S0103-97332006000500027Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2006-10-23T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false
dc.title.none.fl_str_mv Estimation of cross sections for molecule-cluster interactions by using artificial neural networks
title Estimation of cross sections for molecule-cluster interactions by using artificial neural networks
spellingShingle Estimation of cross sections for molecule-cluster interactions by using artificial neural networks
Böyükata,Mustafa
Artificial Neural Networks
Molecular Dynamics
Clusters
Reactivity
title_short Estimation of cross sections for molecule-cluster interactions by using artificial neural networks
title_full Estimation of cross sections for molecule-cluster interactions by using artificial neural networks
title_fullStr Estimation of cross sections for molecule-cluster interactions by using artificial neural networks
title_full_unstemmed Estimation of cross sections for molecule-cluster interactions by using artificial neural networks
title_sort Estimation of cross sections for molecule-cluster interactions by using artificial neural networks
author Böyükata,Mustafa
author_facet Böyükata,Mustafa
Koçyigit,Yücel
Güvenç,Ziya B.
author_role author
author2 Koçyigit,Yücel
Güvenç,Ziya B.
author2_role author
author
dc.contributor.author.fl_str_mv Böyükata,Mustafa
Koçyigit,Yücel
Güvenç,Ziya B.
dc.subject.por.fl_str_mv Artificial Neural Networks
Molecular Dynamics
Clusters
Reactivity
topic Artificial Neural Networks
Molecular Dynamics
Clusters
Reactivity
description The cross sections of D2(v,j)+Ni n(T), n = 19 and 20, collision systems have been estimated by using Artificial Neural Networks (ANNs). For training, previously determined cross section values via molecular dynamics simulation have been used. The performance of the ANNs for predicting any quantities in molecule-cluster interaction has been investigated. Effects of the temperature of the clusters and the rovibrational states of the molecule are analyzed. The results are in good agreement with previous studies.
publishDate 2006
dc.date.none.fl_str_mv 2006-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000500027
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000500027
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-97332006000500027
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Física
publisher.none.fl_str_mv Sociedade Brasileira de Física
dc.source.none.fl_str_mv Brazilian Journal of Physics v.36 n.3a 2006
reponame:Brazilian Journal of Physics
instname:Sociedade Brasileira de Física (SBF)
instacron:SBF
instname_str Sociedade Brasileira de Física (SBF)
instacron_str SBF
institution SBF
reponame_str Brazilian Journal of Physics
collection Brazilian Journal of Physics
repository.name.fl_str_mv Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)
repository.mail.fl_str_mv sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br
_version_ 1754734863062138880