Estimation of cross sections for molecule-cluster interactions by using artificial neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Physics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000500027 |
Resumo: | The cross sections of D2(v,j)+Ni n(T), n = 19 and 20, collision systems have been estimated by using Artificial Neural Networks (ANNs). For training, previously determined cross section values via molecular dynamics simulation have been used. The performance of the ANNs for predicting any quantities in molecule-cluster interaction has been investigated. Effects of the temperature of the clusters and the rovibrational states of the molecule are analyzed. The results are in good agreement with previous studies. |
id |
SBF-2_5cc5006670f8d11e2ecefabb12a781ce |
---|---|
oai_identifier_str |
oai:scielo:S0103-97332006000500027 |
network_acronym_str |
SBF-2 |
network_name_str |
Brazilian Journal of Physics |
repository_id_str |
|
spelling |
Estimation of cross sections for molecule-cluster interactions by using artificial neural networksArtificial Neural NetworksMolecular DynamicsClustersReactivityThe cross sections of D2(v,j)+Ni n(T), n = 19 and 20, collision systems have been estimated by using Artificial Neural Networks (ANNs). For training, previously determined cross section values via molecular dynamics simulation have been used. The performance of the ANNs for predicting any quantities in molecule-cluster interaction has been investigated. Effects of the temperature of the clusters and the rovibrational states of the molecule are analyzed. The results are in good agreement with previous studies.Sociedade Brasileira de Física2006-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000500027Brazilian Journal of Physics v.36 n.3a 2006reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332006000500027info:eu-repo/semantics/openAccessBöyükata,MustafaKoçyigit,YücelGüvenç,Ziya B.eng2006-10-23T00:00:00Zoai:scielo:S0103-97332006000500027Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2006-10-23T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false |
dc.title.none.fl_str_mv |
Estimation of cross sections for molecule-cluster interactions by using artificial neural networks |
title |
Estimation of cross sections for molecule-cluster interactions by using artificial neural networks |
spellingShingle |
Estimation of cross sections for molecule-cluster interactions by using artificial neural networks Böyükata,Mustafa Artificial Neural Networks Molecular Dynamics Clusters Reactivity |
title_short |
Estimation of cross sections for molecule-cluster interactions by using artificial neural networks |
title_full |
Estimation of cross sections for molecule-cluster interactions by using artificial neural networks |
title_fullStr |
Estimation of cross sections for molecule-cluster interactions by using artificial neural networks |
title_full_unstemmed |
Estimation of cross sections for molecule-cluster interactions by using artificial neural networks |
title_sort |
Estimation of cross sections for molecule-cluster interactions by using artificial neural networks |
author |
Böyükata,Mustafa |
author_facet |
Böyükata,Mustafa Koçyigit,Yücel Güvenç,Ziya B. |
author_role |
author |
author2 |
Koçyigit,Yücel Güvenç,Ziya B. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Böyükata,Mustafa Koçyigit,Yücel Güvenç,Ziya B. |
dc.subject.por.fl_str_mv |
Artificial Neural Networks Molecular Dynamics Clusters Reactivity |
topic |
Artificial Neural Networks Molecular Dynamics Clusters Reactivity |
description |
The cross sections of D2(v,j)+Ni n(T), n = 19 and 20, collision systems have been estimated by using Artificial Neural Networks (ANNs). For training, previously determined cross section values via molecular dynamics simulation have been used. The performance of the ANNs for predicting any quantities in molecule-cluster interaction has been investigated. Effects of the temperature of the clusters and the rovibrational states of the molecule are analyzed. The results are in good agreement with previous studies. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000500027 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000500027 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0103-97332006000500027 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
Brazilian Journal of Physics v.36 n.3a 2006 reponame:Brazilian Journal of Physics instname:Sociedade Brasileira de Física (SBF) instacron:SBF |
instname_str |
Sociedade Brasileira de Física (SBF) |
instacron_str |
SBF |
institution |
SBF |
reponame_str |
Brazilian Journal of Physics |
collection |
Brazilian Journal of Physics |
repository.name.fl_str_mv |
Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF) |
repository.mail.fl_str_mv |
sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br |
_version_ |
1754734863062138880 |