An Extended Linear Discontinuous Method for One-group Fixed Source Discrete Ordinates Problems with Isotropic Scattering in Slab Geometry
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000100061 |
Resumo: | ABSTRACT Nowadays, the obtainment of an accurate numerical solution of fixed source discrete ordinates problems is relevant in many areas of engineering and science. In this work, we extend the hybrid Finite Element Spectral Green’s Function method (FEM-SGF), originally developed to solve eigenvalue diffusion problems, for fixed source problems using as a mathematical model, the discrete ordinates formulation in one energy group with isotropic scattering in slab geometry. This new method, Extended Linear Discontinuous Discrete Ordinates (ELD-SN), is based on the use of neutron balance equations and the construction of a hybrid auxiliary equation. This auxiliary equation combines a linear discontinuous approximation and spectral parameters to approximate the neutron angular flux inside the cell. Numerical results for benchmark problems are presented to illustrate the accuracy and computational performance of our methodology. ELD-SN method is free from spatial truncation errors in S 2 quadrature, and generate good results in the other quadrature sets. This method is more accurate than the conventional Diamond Difference (DD) and Linear Discontinuous (LD) methods, but surpassed by the Spectral Green’s Function (SGF) method, for quadrature order greater than two. |
id |
SBMAC-1_bc0f9788c7a805c4b33d6817ad757194 |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512019000100061 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
An Extended Linear Discontinuous Method for One-group Fixed Source Discrete Ordinates Problems with Isotropic Scattering in Slab Geometryfixed source problemsdiscrete ordinates formulationhybrid methodlinear-discontinuousspectral parametersABSTRACT Nowadays, the obtainment of an accurate numerical solution of fixed source discrete ordinates problems is relevant in many areas of engineering and science. In this work, we extend the hybrid Finite Element Spectral Green’s Function method (FEM-SGF), originally developed to solve eigenvalue diffusion problems, for fixed source problems using as a mathematical model, the discrete ordinates formulation in one energy group with isotropic scattering in slab geometry. This new method, Extended Linear Discontinuous Discrete Ordinates (ELD-SN), is based on the use of neutron balance equations and the construction of a hybrid auxiliary equation. This auxiliary equation combines a linear discontinuous approximation and spectral parameters to approximate the neutron angular flux inside the cell. Numerical results for benchmark problems are presented to illustrate the accuracy and computational performance of our methodology. ELD-SN method is free from spatial truncation errors in S 2 quadrature, and generate good results in the other quadrature sets. This method is more accurate than the conventional Diamond Difference (DD) and Linear Discontinuous (LD) methods, but surpassed by the Spectral Green’s Function (SGF) method, for quadrature order greater than two.Sociedade Brasileira de Matemática Aplicada e Computacional2019-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000100061TEMA (São Carlos) v.20 n.1 2019reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2019.020.01.061info:eu-repo/semantics/openAccessRIVAS-ORTIZ,I.B.DOMINGUEZ,D.S.HERNANDEZ,C.R.G.IGLESIAS,S.M.ESCRIVÁ,A.eng2019-06-07T00:00:00Zoai:scielo:S2179-84512019000100061Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2019-06-07T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
An Extended Linear Discontinuous Method for One-group Fixed Source Discrete Ordinates Problems with Isotropic Scattering in Slab Geometry |
title |
An Extended Linear Discontinuous Method for One-group Fixed Source Discrete Ordinates Problems with Isotropic Scattering in Slab Geometry |
spellingShingle |
An Extended Linear Discontinuous Method for One-group Fixed Source Discrete Ordinates Problems with Isotropic Scattering in Slab Geometry RIVAS-ORTIZ,I.B. fixed source problems discrete ordinates formulation hybrid method linear-discontinuous spectral parameters |
title_short |
An Extended Linear Discontinuous Method for One-group Fixed Source Discrete Ordinates Problems with Isotropic Scattering in Slab Geometry |
title_full |
An Extended Linear Discontinuous Method for One-group Fixed Source Discrete Ordinates Problems with Isotropic Scattering in Slab Geometry |
title_fullStr |
An Extended Linear Discontinuous Method for One-group Fixed Source Discrete Ordinates Problems with Isotropic Scattering in Slab Geometry |
title_full_unstemmed |
An Extended Linear Discontinuous Method for One-group Fixed Source Discrete Ordinates Problems with Isotropic Scattering in Slab Geometry |
title_sort |
An Extended Linear Discontinuous Method for One-group Fixed Source Discrete Ordinates Problems with Isotropic Scattering in Slab Geometry |
author |
RIVAS-ORTIZ,I.B. |
author_facet |
RIVAS-ORTIZ,I.B. DOMINGUEZ,D.S. HERNANDEZ,C.R.G. IGLESIAS,S.M. ESCRIVÁ,A. |
author_role |
author |
author2 |
DOMINGUEZ,D.S. HERNANDEZ,C.R.G. IGLESIAS,S.M. ESCRIVÁ,A. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
RIVAS-ORTIZ,I.B. DOMINGUEZ,D.S. HERNANDEZ,C.R.G. IGLESIAS,S.M. ESCRIVÁ,A. |
dc.subject.por.fl_str_mv |
fixed source problems discrete ordinates formulation hybrid method linear-discontinuous spectral parameters |
topic |
fixed source problems discrete ordinates formulation hybrid method linear-discontinuous spectral parameters |
description |
ABSTRACT Nowadays, the obtainment of an accurate numerical solution of fixed source discrete ordinates problems is relevant in many areas of engineering and science. In this work, we extend the hybrid Finite Element Spectral Green’s Function method (FEM-SGF), originally developed to solve eigenvalue diffusion problems, for fixed source problems using as a mathematical model, the discrete ordinates formulation in one energy group with isotropic scattering in slab geometry. This new method, Extended Linear Discontinuous Discrete Ordinates (ELD-SN), is based on the use of neutron balance equations and the construction of a hybrid auxiliary equation. This auxiliary equation combines a linear discontinuous approximation and spectral parameters to approximate the neutron angular flux inside the cell. Numerical results for benchmark problems are presented to illustrate the accuracy and computational performance of our methodology. ELD-SN method is free from spatial truncation errors in S 2 quadrature, and generate good results in the other quadrature sets. This method is more accurate than the conventional Diamond Difference (DD) and Linear Discontinuous (LD) methods, but surpassed by the Spectral Green’s Function (SGF) method, for quadrature order greater than two. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000100061 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000100061 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5540/tema.2019.020.01.061 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.20 n.1 2019 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122220612681728 |