Optimal pest control problem in population dynamics
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Computational & Applied Mathematics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000100004 |
Resumo: | One of the main goals of the pest control is to maintain the density of the pest population in the equilibrium level below economic damages. For reaching this goal, the optimal pest control problem was divided in two parts. In the first part, the two optimal control functions were considered. These functions move the ecosystem pest-natural enemy at an equilibrium state below the economic injury level. In the second part, the one optimal control function stabilizes the ecosystem in this level, minimizing the functional that characterizes quadratic deviations of this level. The first problem was resolved through the application of the Maximum Principle of Pontryagin. The Dynamic Programming was used for the resolution of the second optimal pest control problem. |
id |
SBMAC-2_3ef692cff8b7cebc371e800d41a82c02 |
---|---|
oai_identifier_str |
oai:scielo:S1807-03022005000100004 |
network_acronym_str |
SBMAC-2 |
network_name_str |
Computational & Applied Mathematics |
repository_id_str |
|
spelling |
Optimal pest control problem in population dynamicsoptimal pest controlMaximum Principle of PontryaginHamilton-Jacobi-Bellman equationOne of the main goals of the pest control is to maintain the density of the pest population in the equilibrium level below economic damages. For reaching this goal, the optimal pest control problem was divided in two parts. In the first part, the two optimal control functions were considered. These functions move the ecosystem pest-natural enemy at an equilibrium state below the economic injury level. In the second part, the one optimal control function stabilizes the ecosystem in this level, minimizing the functional that characterizes quadratic deviations of this level. The first problem was resolved through the application of the Maximum Principle of Pontryagin. The Dynamic Programming was used for the resolution of the second optimal pest control problem.Sociedade Brasileira de Matemática Aplicada e Computacional2005-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000100004Computational & Applied Mathematics v.24 n.1 2005reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMACinfo:eu-repo/semantics/openAccessRafikov,MaratBalthazar,José Manoeleng2009-05-07T00:00:00Zoai:scielo:S1807-03022005000100004Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2009-05-07T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false |
dc.title.none.fl_str_mv |
Optimal pest control problem in population dynamics |
title |
Optimal pest control problem in population dynamics |
spellingShingle |
Optimal pest control problem in population dynamics Rafikov,Marat optimal pest control Maximum Principle of Pontryagin Hamilton-Jacobi-Bellman equation |
title_short |
Optimal pest control problem in population dynamics |
title_full |
Optimal pest control problem in population dynamics |
title_fullStr |
Optimal pest control problem in population dynamics |
title_full_unstemmed |
Optimal pest control problem in population dynamics |
title_sort |
Optimal pest control problem in population dynamics |
author |
Rafikov,Marat |
author_facet |
Rafikov,Marat Balthazar,José Manoel |
author_role |
author |
author2 |
Balthazar,José Manoel |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Rafikov,Marat Balthazar,José Manoel |
dc.subject.por.fl_str_mv |
optimal pest control Maximum Principle of Pontryagin Hamilton-Jacobi-Bellman equation |
topic |
optimal pest control Maximum Principle of Pontryagin Hamilton-Jacobi-Bellman equation |
description |
One of the main goals of the pest control is to maintain the density of the pest population in the equilibrium level below economic damages. For reaching this goal, the optimal pest control problem was divided in two parts. In the first part, the two optimal control functions were considered. These functions move the ecosystem pest-natural enemy at an equilibrium state below the economic injury level. In the second part, the one optimal control function stabilizes the ecosystem in this level, minimizing the functional that characterizes quadratic deviations of this level. The first problem was resolved through the application of the Maximum Principle of Pontryagin. The Dynamic Programming was used for the resolution of the second optimal pest control problem. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000100004 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000100004 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
Computational & Applied Mathematics v.24 n.1 2005 reponame:Computational & Applied Mathematics instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
Computational & Applied Mathematics |
collection |
Computational & Applied Mathematics |
repository.name.fl_str_mv |
Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
repository.mail.fl_str_mv |
||sbmac@sbmac.org.br |
_version_ |
1754734889724280832 |