Optimal pest control problem in population dynamics

Detalhes bibliográficos
Autor(a) principal: Rafikov,Marat
Data de Publicação: 2005
Outros Autores: Balthazar,José Manoel
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Computational & Applied Mathematics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000100004
Resumo: One of the main goals of the pest control is to maintain the density of the pest population in the equilibrium level below economic damages. For reaching this goal, the optimal pest control problem was divided in two parts. In the first part, the two optimal control functions were considered. These functions move the ecosystem pest-natural enemy at an equilibrium state below the economic injury level. In the second part, the one optimal control function stabilizes the ecosystem in this level, minimizing the functional that characterizes quadratic deviations of this level. The first problem was resolved through the application of the Maximum Principle of Pontryagin. The Dynamic Programming was used for the resolution of the second optimal pest control problem.
id SBMAC-2_3ef692cff8b7cebc371e800d41a82c02
oai_identifier_str oai:scielo:S1807-03022005000100004
network_acronym_str SBMAC-2
network_name_str Computational & Applied Mathematics
repository_id_str
spelling Optimal pest control problem in population dynamicsoptimal pest controlMaximum Principle of PontryaginHamilton-Jacobi-Bellman equationOne of the main goals of the pest control is to maintain the density of the pest population in the equilibrium level below economic damages. For reaching this goal, the optimal pest control problem was divided in two parts. In the first part, the two optimal control functions were considered. These functions move the ecosystem pest-natural enemy at an equilibrium state below the economic injury level. In the second part, the one optimal control function stabilizes the ecosystem in this level, minimizing the functional that characterizes quadratic deviations of this level. The first problem was resolved through the application of the Maximum Principle of Pontryagin. The Dynamic Programming was used for the resolution of the second optimal pest control problem.Sociedade Brasileira de Matemática Aplicada e Computacional2005-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000100004Computational & Applied Mathematics v.24 n.1 2005reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMACinfo:eu-repo/semantics/openAccessRafikov,MaratBalthazar,José Manoeleng2009-05-07T00:00:00Zoai:scielo:S1807-03022005000100004Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2009-05-07T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false
dc.title.none.fl_str_mv Optimal pest control problem in population dynamics
title Optimal pest control problem in population dynamics
spellingShingle Optimal pest control problem in population dynamics
Rafikov,Marat
optimal pest control
Maximum Principle of Pontryagin
Hamilton-Jacobi-Bellman equation
title_short Optimal pest control problem in population dynamics
title_full Optimal pest control problem in population dynamics
title_fullStr Optimal pest control problem in population dynamics
title_full_unstemmed Optimal pest control problem in population dynamics
title_sort Optimal pest control problem in population dynamics
author Rafikov,Marat
author_facet Rafikov,Marat
Balthazar,José Manoel
author_role author
author2 Balthazar,José Manoel
author2_role author
dc.contributor.author.fl_str_mv Rafikov,Marat
Balthazar,José Manoel
dc.subject.por.fl_str_mv optimal pest control
Maximum Principle of Pontryagin
Hamilton-Jacobi-Bellman equation
topic optimal pest control
Maximum Principle of Pontryagin
Hamilton-Jacobi-Bellman equation
description One of the main goals of the pest control is to maintain the density of the pest population in the equilibrium level below economic damages. For reaching this goal, the optimal pest control problem was divided in two parts. In the first part, the two optimal control functions were considered. These functions move the ecosystem pest-natural enemy at an equilibrium state below the economic injury level. In the second part, the one optimal control function stabilizes the ecosystem in this level, minimizing the functional that characterizes quadratic deviations of this level. The first problem was resolved through the application of the Maximum Principle of Pontryagin. The Dynamic Programming was used for the resolution of the second optimal pest control problem.
publishDate 2005
dc.date.none.fl_str_mv 2005-04-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000100004
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000100004
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv Computational & Applied Mathematics v.24 n.1 2005
reponame:Computational & Applied Mathematics
instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
instacron_str SBMAC
institution SBMAC
reponame_str Computational & Applied Mathematics
collection Computational & Applied Mathematics
repository.name.fl_str_mv Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
repository.mail.fl_str_mv ||sbmac@sbmac.org.br
_version_ 1754734889724280832