Optimal pest control problem in population dynamics
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1590/s1807-03022005000100004 http://hdl.handle.net/11449/231904 |
Resumo: | One of the main goals of the pest control is to maintain the density of the pest population in the equilibrium level below economic damages. For reaching this goal, the optimal pest control problem was divided in two parts. In the first part, the two optimal control functions were considered. These functions move the ecosystem pest – natural enemy at an equilibrium state below the economic injury level. In the second part, the one optimal control function stabilizes the ecosystem in this level, minimizing the functional that characterizes quadratic deviations of this level. The first problem was resolved through the application of the Maximum Principle of Pontryagin. The Dynamic Programming was used for the resolution of the second optimal pest control problem. |
id |
UNSP_57d4a48d9a36f581c00f5693ed27b67e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/231904 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Optimal pest control problem in population dynamicsHamilton-Jacobi- Bellman equationMaximum Principle of PontryaginOptimal pest controlOne of the main goals of the pest control is to maintain the density of the pest population in the equilibrium level below economic damages. For reaching this goal, the optimal pest control problem was divided in two parts. In the first part, the two optimal control functions were considered. These functions move the ecosystem pest – natural enemy at an equilibrium state below the economic injury level. In the second part, the one optimal control function stabilizes the ecosystem in this level, minimizing the functional that characterizes quadratic deviations of this level. The first problem was resolved through the application of the Maximum Principle of Pontryagin. The Dynamic Programming was used for the resolution of the second optimal pest control problem.Department of Physics Statistics and Mathematics UNJUI Ijui University, Cx. Postal 560Departament of Statistics Applied Mathematics and Computation UNESP Universidade Estadual Paulista, Cx. Postal 178Departament of Statistics Applied Mathematics and Computation UNESP Universidade Estadual Paulista, Cx. Postal 178Ijui UniversityUniversidade Estadual Paulista (UNESP)Rafikov, MaratBalthazar, José Manoel [UNESP]2022-04-29T08:48:09Z2022-04-29T08:48:09Z2005-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article65-81http://dx.doi.org/10.1590/s1807-03022005000100004Computational and Applied Mathematics, v. 24, n. 1, p. 65-81, 2005.1807-03022238-3603http://hdl.handle.net/11449/23190410.1590/s1807-030220050001000042-s2.0-74049104222Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComputational and Applied Mathematicsinfo:eu-repo/semantics/openAccess2022-04-29T08:48:09Zoai:repositorio.unesp.br:11449/231904Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:04:36.705651Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Optimal pest control problem in population dynamics |
title |
Optimal pest control problem in population dynamics |
spellingShingle |
Optimal pest control problem in population dynamics Rafikov, Marat Hamilton-Jacobi- Bellman equation Maximum Principle of Pontryagin Optimal pest control |
title_short |
Optimal pest control problem in population dynamics |
title_full |
Optimal pest control problem in population dynamics |
title_fullStr |
Optimal pest control problem in population dynamics |
title_full_unstemmed |
Optimal pest control problem in population dynamics |
title_sort |
Optimal pest control problem in population dynamics |
author |
Rafikov, Marat |
author_facet |
Rafikov, Marat Balthazar, José Manoel [UNESP] |
author_role |
author |
author2 |
Balthazar, José Manoel [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Ijui University Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Rafikov, Marat Balthazar, José Manoel [UNESP] |
dc.subject.por.fl_str_mv |
Hamilton-Jacobi- Bellman equation Maximum Principle of Pontryagin Optimal pest control |
topic |
Hamilton-Jacobi- Bellman equation Maximum Principle of Pontryagin Optimal pest control |
description |
One of the main goals of the pest control is to maintain the density of the pest population in the equilibrium level below economic damages. For reaching this goal, the optimal pest control problem was divided in two parts. In the first part, the two optimal control functions were considered. These functions move the ecosystem pest – natural enemy at an equilibrium state below the economic injury level. In the second part, the one optimal control function stabilizes the ecosystem in this level, minimizing the functional that characterizes quadratic deviations of this level. The first problem was resolved through the application of the Maximum Principle of Pontryagin. The Dynamic Programming was used for the resolution of the second optimal pest control problem. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-01-01 2022-04-29T08:48:09Z 2022-04-29T08:48:09Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/s1807-03022005000100004 Computational and Applied Mathematics, v. 24, n. 1, p. 65-81, 2005. 1807-0302 2238-3603 http://hdl.handle.net/11449/231904 10.1590/s1807-03022005000100004 2-s2.0-74049104222 |
url |
http://dx.doi.org/10.1590/s1807-03022005000100004 http://hdl.handle.net/11449/231904 |
identifier_str_mv |
Computational and Applied Mathematics, v. 24, n. 1, p. 65-81, 2005. 1807-0302 2238-3603 10.1590/s1807-03022005000100004 2-s2.0-74049104222 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Computational and Applied Mathematics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
65-81 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128751930703872 |