Optimal pest control problem in population dynamics
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000100004 http://hdl.handle.net/11449/24866 |
Resumo: | One of the main goals of the pest control is to maintain the density of the pest population in the equilibrium level below economic damages. For reaching this goal, the optimal pest control problem was divided in two parts. In the first part, the two optimal control functions were considered. These functions move the ecosystem pest-natural enemy at an equilibrium state below the economic injury level. In the second part, the one optimal control function stabilizes the ecosystem in this level, minimizing the functional that characterizes quadratic deviations of this level. The first problem was resolved through the application of the Maximum Principle of Pontryagin. The Dynamic Programming was used for the resolution of the second optimal pest control problem. |
id |
UNSP_748c164796056a06b71f39f1d07922ae |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/24866 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Optimal pest control problem in population dynamicsoptimal pest controlMaximum Principle of PontryaginHamilton-Jacobi-Bellman equationOne of the main goals of the pest control is to maintain the density of the pest population in the equilibrium level below economic damages. For reaching this goal, the optimal pest control problem was divided in two parts. In the first part, the two optimal control functions were considered. These functions move the ecosystem pest-natural enemy at an equilibrium state below the economic injury level. In the second part, the one optimal control function stabilizes the ecosystem in this level, minimizing the functional that characterizes quadratic deviations of this level. The first problem was resolved through the application of the Maximum Principle of Pontryagin. The Dynamic Programming was used for the resolution of the second optimal pest control problem.UNJUI Statistics and Mathematics Department of PhysicsUNESP Applied Mathematics and Computation Departament of StatisticsUNESP Applied Mathematics and Computation Departament of StatisticsSociedade Brasileira de Matemática Aplicada e ComputacionalUniversidade Regional do Noroeste do Estado do Rio Grande do Sul (Unijuí)Universidade Estadual Paulista (Unesp)Rafikov, MaratBalthazar, José Manoel [UNESP]2013-09-30T19:32:01Z2014-05-20T14:16:11Z2013-09-30T19:32:01Z2014-05-20T14:16:11Z2005-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article65-81application/pdfhttp://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000100004Computational & Applied Mathematics. Sociedade Brasileira de Matemática Aplicada e Computacional, v. 24, n. 1, p. 65-81, 2005.1807-0302http://hdl.handle.net/11449/24866S1807-03022005000100004S1807-03022005000100004.pdfSciELOreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComputational & Applied Mathematicsinfo:eu-repo/semantics/openAccess2023-12-26T06:14:21Zoai:repositorio.unesp.br:11449/24866Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:18:28.437938Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Optimal pest control problem in population dynamics |
title |
Optimal pest control problem in population dynamics |
spellingShingle |
Optimal pest control problem in population dynamics Rafikov, Marat optimal pest control Maximum Principle of Pontryagin Hamilton-Jacobi-Bellman equation |
title_short |
Optimal pest control problem in population dynamics |
title_full |
Optimal pest control problem in population dynamics |
title_fullStr |
Optimal pest control problem in population dynamics |
title_full_unstemmed |
Optimal pest control problem in population dynamics |
title_sort |
Optimal pest control problem in population dynamics |
author |
Rafikov, Marat |
author_facet |
Rafikov, Marat Balthazar, José Manoel [UNESP] |
author_role |
author |
author2 |
Balthazar, José Manoel [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Regional do Noroeste do Estado do Rio Grande do Sul (Unijuí) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Rafikov, Marat Balthazar, José Manoel [UNESP] |
dc.subject.por.fl_str_mv |
optimal pest control Maximum Principle of Pontryagin Hamilton-Jacobi-Bellman equation |
topic |
optimal pest control Maximum Principle of Pontryagin Hamilton-Jacobi-Bellman equation |
description |
One of the main goals of the pest control is to maintain the density of the pest population in the equilibrium level below economic damages. For reaching this goal, the optimal pest control problem was divided in two parts. In the first part, the two optimal control functions were considered. These functions move the ecosystem pest-natural enemy at an equilibrium state below the economic injury level. In the second part, the one optimal control function stabilizes the ecosystem in this level, minimizing the functional that characterizes quadratic deviations of this level. The first problem was resolved through the application of the Maximum Principle of Pontryagin. The Dynamic Programming was used for the resolution of the second optimal pest control problem. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-04-01 2013-09-30T19:32:01Z 2013-09-30T19:32:01Z 2014-05-20T14:16:11Z 2014-05-20T14:16:11Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000100004 Computational & Applied Mathematics. Sociedade Brasileira de Matemática Aplicada e Computacional, v. 24, n. 1, p. 65-81, 2005. 1807-0302 http://hdl.handle.net/11449/24866 S1807-03022005000100004 S1807-03022005000100004.pdf |
url |
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000100004 http://hdl.handle.net/11449/24866 |
identifier_str_mv |
Computational & Applied Mathematics. Sociedade Brasileira de Matemática Aplicada e Computacional, v. 24, n. 1, p. 65-81, 2005. 1807-0302 S1807-03022005000100004 S1807-03022005000100004.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Computational & Applied Mathematics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
65-81 application/pdf |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
SciELO reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129307259699200 |