Optimal pest control problem in population dynamics

Detalhes bibliográficos
Autor(a) principal: Rafikov, Marat
Data de Publicação: 2005
Outros Autores: Balthazar, José Manoel [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000100004
http://hdl.handle.net/11449/24866
Resumo: One of the main goals of the pest control is to maintain the density of the pest population in the equilibrium level below economic damages. For reaching this goal, the optimal pest control problem was divided in two parts. In the first part, the two optimal control functions were considered. These functions move the ecosystem pest-natural enemy at an equilibrium state below the economic injury level. In the second part, the one optimal control function stabilizes the ecosystem in this level, minimizing the functional that characterizes quadratic deviations of this level. The first problem was resolved through the application of the Maximum Principle of Pontryagin. The Dynamic Programming was used for the resolution of the second optimal pest control problem.
id UNSP_748c164796056a06b71f39f1d07922ae
oai_identifier_str oai:repositorio.unesp.br:11449/24866
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Optimal pest control problem in population dynamicsoptimal pest controlMaximum Principle of PontryaginHamilton-Jacobi-Bellman equationOne of the main goals of the pest control is to maintain the density of the pest population in the equilibrium level below economic damages. For reaching this goal, the optimal pest control problem was divided in two parts. In the first part, the two optimal control functions were considered. These functions move the ecosystem pest-natural enemy at an equilibrium state below the economic injury level. In the second part, the one optimal control function stabilizes the ecosystem in this level, minimizing the functional that characterizes quadratic deviations of this level. The first problem was resolved through the application of the Maximum Principle of Pontryagin. The Dynamic Programming was used for the resolution of the second optimal pest control problem.UNJUI Statistics and Mathematics Department of PhysicsUNESP Applied Mathematics and Computation Departament of StatisticsUNESP Applied Mathematics and Computation Departament of StatisticsSociedade Brasileira de Matemática Aplicada e ComputacionalUniversidade Regional do Noroeste do Estado do Rio Grande do Sul (Unijuí)Universidade Estadual Paulista (Unesp)Rafikov, MaratBalthazar, José Manoel [UNESP]2013-09-30T19:32:01Z2014-05-20T14:16:11Z2013-09-30T19:32:01Z2014-05-20T14:16:11Z2005-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article65-81application/pdfhttp://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000100004Computational & Applied Mathematics. Sociedade Brasileira de Matemática Aplicada e Computacional, v. 24, n. 1, p. 65-81, 2005.1807-0302http://hdl.handle.net/11449/24866S1807-03022005000100004S1807-03022005000100004.pdfSciELOreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComputational & Applied Mathematicsinfo:eu-repo/semantics/openAccess2023-12-26T06:14:21Zoai:repositorio.unesp.br:11449/24866Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:18:28.437938Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Optimal pest control problem in population dynamics
title Optimal pest control problem in population dynamics
spellingShingle Optimal pest control problem in population dynamics
Rafikov, Marat
optimal pest control
Maximum Principle of Pontryagin
Hamilton-Jacobi-Bellman equation
title_short Optimal pest control problem in population dynamics
title_full Optimal pest control problem in population dynamics
title_fullStr Optimal pest control problem in population dynamics
title_full_unstemmed Optimal pest control problem in population dynamics
title_sort Optimal pest control problem in population dynamics
author Rafikov, Marat
author_facet Rafikov, Marat
Balthazar, José Manoel [UNESP]
author_role author
author2 Balthazar, José Manoel [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade Regional do Noroeste do Estado do Rio Grande do Sul (Unijuí)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Rafikov, Marat
Balthazar, José Manoel [UNESP]
dc.subject.por.fl_str_mv optimal pest control
Maximum Principle of Pontryagin
Hamilton-Jacobi-Bellman equation
topic optimal pest control
Maximum Principle of Pontryagin
Hamilton-Jacobi-Bellman equation
description One of the main goals of the pest control is to maintain the density of the pest population in the equilibrium level below economic damages. For reaching this goal, the optimal pest control problem was divided in two parts. In the first part, the two optimal control functions were considered. These functions move the ecosystem pest-natural enemy at an equilibrium state below the economic injury level. In the second part, the one optimal control function stabilizes the ecosystem in this level, minimizing the functional that characterizes quadratic deviations of this level. The first problem was resolved through the application of the Maximum Principle of Pontryagin. The Dynamic Programming was used for the resolution of the second optimal pest control problem.
publishDate 2005
dc.date.none.fl_str_mv 2005-04-01
2013-09-30T19:32:01Z
2013-09-30T19:32:01Z
2014-05-20T14:16:11Z
2014-05-20T14:16:11Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000100004
Computational & Applied Mathematics. Sociedade Brasileira de Matemática Aplicada e Computacional, v. 24, n. 1, p. 65-81, 2005.
1807-0302
http://hdl.handle.net/11449/24866
S1807-03022005000100004
S1807-03022005000100004.pdf
url http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000100004
http://hdl.handle.net/11449/24866
identifier_str_mv Computational & Applied Mathematics. Sociedade Brasileira de Matemática Aplicada e Computacional, v. 24, n. 1, p. 65-81, 2005.
1807-0302
S1807-03022005000100004
S1807-03022005000100004.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Computational & Applied Mathematics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 65-81
application/pdf
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv SciELO
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129307259699200