Identidades Polinomiais ℤ2-Graduadas para as Álgebras M1,1(E) e UT2(F) via representações de grupos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFSCAR |
Texto Completo: | https://repositorio.ufscar.br/handle/ufscar/9745 |
Resumo: | In this essay we will briefly study the concept of Algebra. We will introduce a little of Group Representation Theory, looking specifically at Young's Theory, which allows us to present explicitly the decomposition of the group algebra FSn into simple subalgebras, where Sn is the symmetric group of order n!. We will also talk about Polynomial Identities and Graded Polynomial Identities, and some pertinent PI-Theory's results. We will relate Symmetrical Groups Representation Theories with PI-Theory. We will show all the Z2-graded polynomial identities for the algebras M2(F) and M1,1(E), where E is the Grassmann Algebra infinitely generated over a field F of characteristic zero. Finally, we will present all G-gradings possibilities for the algebra UT2(F), of the upper triangular matrices of order two with entries in a field of characteristic zero (we will see that, up to isomorphisms, there are only two possibilities), moreover, we will find all the G-graded polynomial identities for this algebra and we will show a numerical sequence involving the graded cocaracteres. |
id |
SCAR_c009cf712f8695223caefd215603735f |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:ufscar/9745 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Cruz, Karina Branco daSchützer, Waldeckhttp://lattes.cnpq.br/8638200922501477http://lattes.cnpq.br/6948488097705610800dac50-3f62-4a7c-a84a-4afccf1fd0362018-04-13T12:55:25Z2018-04-13T12:55:25Z2017-09-01CRUZ, Karina Branco da. Identidades Polinomiais ℤ2-Graduadas para as Álgebras M1,1(E) e UT2(F) via representações de grupos. 2017. Dissertação (Mestrado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9745.https://repositorio.ufscar.br/handle/ufscar/9745In this essay we will briefly study the concept of Algebra. We will introduce a little of Group Representation Theory, looking specifically at Young's Theory, which allows us to present explicitly the decomposition of the group algebra FSn into simple subalgebras, where Sn is the symmetric group of order n!. We will also talk about Polynomial Identities and Graded Polynomial Identities, and some pertinent PI-Theory's results. We will relate Symmetrical Groups Representation Theories with PI-Theory. We will show all the Z2-graded polynomial identities for the algebras M2(F) and M1,1(E), where E is the Grassmann Algebra infinitely generated over a field F of characteristic zero. Finally, we will present all G-gradings possibilities for the algebra UT2(F), of the upper triangular matrices of order two with entries in a field of characteristic zero (we will see that, up to isomorphisms, there are only two possibilities), moreover, we will find all the G-graded polynomial identities for this algebra and we will show a numerical sequence involving the graded cocaracteres.Nesta dissertação estudaremos brevemente o conceito de Álgebra. Introduziremos um pouco da Teoria de Representação de Grupos, olhando especificamente para Teoria de Young que nos permite apresentar explicitamente a decomposição da álgebra de grupo FSn em subálgebras simples, com Sn sendo o grupo simétrico de ordem n!. Falaremos também de Identidades Polinomiais e Identidades Polinomiais Graduadas, e alguns resultados pertinentes de PI-Teoria. Relacionaremos as duas teorias, Teorias de Representação de Grupos Simétricos e PI-Teoria. Exibiremos todas as identidades polinomiais Z2-graduadas para as álgebras M2(F) e M1,1(E), com E sendo a álgebra de Grassmann infinitamente gerada sobre um corpo F de característica zero. Por fim, apresentaremos todas as possíveis G-graduações para a álgebra UT2(F), das matrizes triangulares superiores de ordem dois com entradas em um corpo de característica zero (veremos que, a menos de isomorfismos, são apenas duas possíveis), assim como, encontraremos todas as identidades polinomiais G-graduadas para esta álgebra e exibiremos uma sequência numérica envolvendo os cocaracteres graduados.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Matemática - PPGMUFSCarÁlgebrasÁlgebra de GrassmannM2(F)M1,1(E)UT2(F)Teoria de representação de grupoIdentidades polinomiaisIdentidades polinomiais graduadasGroup representation theoryPolinomial identitiesGraded polinomial identitiesGrassmann algebraAlgebrasCIENCIAS EXATAS E DA TERRA::MATEMATICA::ALGEBRAIdentidades Polinomiais ℤ2-Graduadas para as Álgebras M1,1(E) e UT2(F) via representações de gruposinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline600600c4a73419-46fa-4fa4-86b7-e9e6e810230cinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/9745/4/license.txtae0398b6f8b235e40ad82cba6c50031dMD54ORIGINALCRUZ_Karina_2018.pdfCRUZ_Karina_2018.pdfapplication/pdf1347920https://repositorio.ufscar.br/bitstream/ufscar/9745/5/CRUZ_Karina_2018.pdfa610d1d79a7a047509de6e375f26ef87MD55TEXTCRUZ_Karina_2018.pdf.txtCRUZ_Karina_2018.pdf.txtExtracted texttext/plain301030https://repositorio.ufscar.br/bitstream/ufscar/9745/6/CRUZ_Karina_2018.pdf.txted6aa943e8d90ffaeb390c0d9efda75aMD56THUMBNAILCRUZ_Karina_2018.pdf.jpgCRUZ_Karina_2018.pdf.jpgIM Thumbnailimage/jpeg7802https://repositorio.ufscar.br/bitstream/ufscar/9745/7/CRUZ_Karina_2018.pdf.jpgdc1822cd04263f794db23fa24ee00ebdMD57ufscar/97452023-09-18 18:31:42.494oai:repositorio.ufscar.br:ufscar/9745TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:42Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Identidades Polinomiais ℤ2-Graduadas para as Álgebras M1,1(E) e UT2(F) via representações de grupos |
title |
Identidades Polinomiais ℤ2-Graduadas para as Álgebras M1,1(E) e UT2(F) via representações de grupos |
spellingShingle |
Identidades Polinomiais ℤ2-Graduadas para as Álgebras M1,1(E) e UT2(F) via representações de grupos Cruz, Karina Branco da Álgebras Álgebra de Grassmann M2(F) M1,1(E) UT2(F) Teoria de representação de grupo Identidades polinomiais Identidades polinomiais graduadas Group representation theory Polinomial identities Graded polinomial identities Grassmann algebra Algebras CIENCIAS EXATAS E DA TERRA::MATEMATICA::ALGEBRA |
title_short |
Identidades Polinomiais ℤ2-Graduadas para as Álgebras M1,1(E) e UT2(F) via representações de grupos |
title_full |
Identidades Polinomiais ℤ2-Graduadas para as Álgebras M1,1(E) e UT2(F) via representações de grupos |
title_fullStr |
Identidades Polinomiais ℤ2-Graduadas para as Álgebras M1,1(E) e UT2(F) via representações de grupos |
title_full_unstemmed |
Identidades Polinomiais ℤ2-Graduadas para as Álgebras M1,1(E) e UT2(F) via representações de grupos |
title_sort |
Identidades Polinomiais ℤ2-Graduadas para as Álgebras M1,1(E) e UT2(F) via representações de grupos |
author |
Cruz, Karina Branco da |
author_facet |
Cruz, Karina Branco da |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/6948488097705610 |
dc.contributor.author.fl_str_mv |
Cruz, Karina Branco da |
dc.contributor.advisor1.fl_str_mv |
Schützer, Waldeck |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8638200922501477 |
dc.contributor.authorID.fl_str_mv |
800dac50-3f62-4a7c-a84a-4afccf1fd036 |
contributor_str_mv |
Schützer, Waldeck |
dc.subject.por.fl_str_mv |
Álgebras Álgebra de Grassmann M2(F) M1,1(E) UT2(F) Teoria de representação de grupo Identidades polinomiais Identidades polinomiais graduadas |
topic |
Álgebras Álgebra de Grassmann M2(F) M1,1(E) UT2(F) Teoria de representação de grupo Identidades polinomiais Identidades polinomiais graduadas Group representation theory Polinomial identities Graded polinomial identities Grassmann algebra Algebras CIENCIAS EXATAS E DA TERRA::MATEMATICA::ALGEBRA |
dc.subject.eng.fl_str_mv |
Group representation theory Polinomial identities Graded polinomial identities Grassmann algebra Algebras |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA::ALGEBRA |
description |
In this essay we will briefly study the concept of Algebra. We will introduce a little of Group Representation Theory, looking specifically at Young's Theory, which allows us to present explicitly the decomposition of the group algebra FSn into simple subalgebras, where Sn is the symmetric group of order n!. We will also talk about Polynomial Identities and Graded Polynomial Identities, and some pertinent PI-Theory's results. We will relate Symmetrical Groups Representation Theories with PI-Theory. We will show all the Z2-graded polynomial identities for the algebras M2(F) and M1,1(E), where E is the Grassmann Algebra infinitely generated over a field F of characteristic zero. Finally, we will present all G-gradings possibilities for the algebra UT2(F), of the upper triangular matrices of order two with entries in a field of characteristic zero (we will see that, up to isomorphisms, there are only two possibilities), moreover, we will find all the G-graded polynomial identities for this algebra and we will show a numerical sequence involving the graded cocaracteres. |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-09-01 |
dc.date.accessioned.fl_str_mv |
2018-04-13T12:55:25Z |
dc.date.available.fl_str_mv |
2018-04-13T12:55:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CRUZ, Karina Branco da. Identidades Polinomiais ℤ2-Graduadas para as Álgebras M1,1(E) e UT2(F) via representações de grupos. 2017. Dissertação (Mestrado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9745. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/ufscar/9745 |
identifier_str_mv |
CRUZ, Karina Branco da. Identidades Polinomiais ℤ2-Graduadas para as Álgebras M1,1(E) e UT2(F) via representações de grupos. 2017. Dissertação (Mestrado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9745. |
url |
https://repositorio.ufscar.br/handle/ufscar/9745 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
c4a73419-46fa-4fa4-86b7-e9e6e810230c |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Matemática - PPGM |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstream/ufscar/9745/4/license.txt https://repositorio.ufscar.br/bitstream/ufscar/9745/5/CRUZ_Karina_2018.pdf https://repositorio.ufscar.br/bitstream/ufscar/9745/6/CRUZ_Karina_2018.pdf.txt https://repositorio.ufscar.br/bitstream/ufscar/9745/7/CRUZ_Karina_2018.pdf.jpg |
bitstream.checksum.fl_str_mv |
ae0398b6f8b235e40ad82cba6c50031d a610d1d79a7a047509de6e375f26ef87 ed6aa943e8d90ffaeb390c0d9efda75a dc1822cd04263f794db23fa24ee00ebd |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
|
_version_ |
1813715588317446144 |