Identidades Polinomiais ℤ2-Graduadas para as Álgebras M1,1(E) e UT2(F) via representações de grupos

Detalhes bibliográficos
Autor(a) principal: Cruz, Karina Branco da
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFSCAR
Texto Completo: https://repositorio.ufscar.br/handle/ufscar/9745
Resumo: In this essay we will briefly study the concept of Algebra. We will introduce a little of Group Representation Theory, looking specifically at Young's Theory, which allows us to present explicitly the decomposition of the group algebra FSn into simple subalgebras, where Sn is the symmetric group of order n!. We will also talk about Polynomial Identities and Graded Polynomial Identities, and some pertinent PI-Theory's results. We will relate Symmetrical Groups Representation Theories with PI-Theory. We will show all the Z2-graded polynomial identities for the algebras M2(F) and M1,1(E), where E is the Grassmann Algebra infinitely generated over a field F of characteristic zero. Finally, we will present all G-gradings possibilities for the algebra UT2(F), of the upper triangular matrices of order two with entries in a field of characteristic zero (we will see that, up to isomorphisms, there are only two possibilities), moreover, we will find all the G-graded polynomial identities for this algebra and we will show a numerical sequence involving the graded cocaracteres.
id SCAR_c009cf712f8695223caefd215603735f
oai_identifier_str oai:repositorio.ufscar.br:ufscar/9745
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Cruz, Karina Branco daSchützer, Waldeckhttp://lattes.cnpq.br/8638200922501477http://lattes.cnpq.br/6948488097705610800dac50-3f62-4a7c-a84a-4afccf1fd0362018-04-13T12:55:25Z2018-04-13T12:55:25Z2017-09-01CRUZ, Karina Branco da. Identidades Polinomiais ℤ2-Graduadas para as Álgebras M1,1(E) e UT2(F) via representações de grupos. 2017. Dissertação (Mestrado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9745.https://repositorio.ufscar.br/handle/ufscar/9745In this essay we will briefly study the concept of Algebra. We will introduce a little of Group Representation Theory, looking specifically at Young's Theory, which allows us to present explicitly the decomposition of the group algebra FSn into simple subalgebras, where Sn is the symmetric group of order n!. We will also talk about Polynomial Identities and Graded Polynomial Identities, and some pertinent PI-Theory's results. We will relate Symmetrical Groups Representation Theories with PI-Theory. We will show all the Z2-graded polynomial identities for the algebras M2(F) and M1,1(E), where E is the Grassmann Algebra infinitely generated over a field F of characteristic zero. Finally, we will present all G-gradings possibilities for the algebra UT2(F), of the upper triangular matrices of order two with entries in a field of characteristic zero (we will see that, up to isomorphisms, there are only two possibilities), moreover, we will find all the G-graded polynomial identities for this algebra and we will show a numerical sequence involving the graded cocaracteres.Nesta dissertação estudaremos brevemente o conceito de Álgebra. Introduziremos um pouco da Teoria de Representação de Grupos, olhando especificamente para Teoria de Young que nos permite apresentar explicitamente a decomposição da álgebra de grupo FSn em subálgebras simples, com Sn sendo o grupo simétrico de ordem n!. Falaremos também de Identidades Polinomiais e Identidades Polinomiais Graduadas, e alguns resultados pertinentes de PI-Teoria. Relacionaremos as duas teorias, Teorias de Representação de Grupos Simétricos e PI-Teoria. Exibiremos todas as identidades polinomiais Z2-graduadas para as álgebras M2(F) e M1,1(E), com E sendo a álgebra de Grassmann infinitamente gerada sobre um corpo F de característica zero. Por fim, apresentaremos todas as possíveis G-graduações para a álgebra UT2(F), das matrizes triangulares superiores de ordem dois com entradas em um corpo de característica zero (veremos que, a menos de isomorfismos, são apenas duas possíveis), assim como, encontraremos todas as identidades polinomiais G-graduadas para esta álgebra e exibiremos uma sequência numérica envolvendo os cocaracteres graduados.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Matemática - PPGMUFSCarÁlgebrasÁlgebra de GrassmannM2(F)M1,1(E)UT2(F)Teoria de representação de grupoIdentidades polinomiaisIdentidades polinomiais graduadasGroup representation theoryPolinomial identitiesGraded polinomial identitiesGrassmann algebraAlgebrasCIENCIAS EXATAS E DA TERRA::MATEMATICA::ALGEBRAIdentidades Polinomiais ℤ2-Graduadas para as Álgebras M1,1(E) e UT2(F) via representações de gruposinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline600600c4a73419-46fa-4fa4-86b7-e9e6e810230cinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstream/ufscar/9745/4/license.txtae0398b6f8b235e40ad82cba6c50031dMD54ORIGINALCRUZ_Karina_2018.pdfCRUZ_Karina_2018.pdfapplication/pdf1347920https://repositorio.ufscar.br/bitstream/ufscar/9745/5/CRUZ_Karina_2018.pdfa610d1d79a7a047509de6e375f26ef87MD55TEXTCRUZ_Karina_2018.pdf.txtCRUZ_Karina_2018.pdf.txtExtracted texttext/plain301030https://repositorio.ufscar.br/bitstream/ufscar/9745/6/CRUZ_Karina_2018.pdf.txted6aa943e8d90ffaeb390c0d9efda75aMD56THUMBNAILCRUZ_Karina_2018.pdf.jpgCRUZ_Karina_2018.pdf.jpgIM Thumbnailimage/jpeg7802https://repositorio.ufscar.br/bitstream/ufscar/9745/7/CRUZ_Karina_2018.pdf.jpgdc1822cd04263f794db23fa24ee00ebdMD57ufscar/97452023-09-18 18:31:42.494oai:repositorio.ufscar.br:ufscar/9745TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestopendoar:43222023-09-18T18:31:42Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Identidades Polinomiais ℤ2-Graduadas para as Álgebras M1,1(E) e UT2(F) via representações de grupos
title Identidades Polinomiais ℤ2-Graduadas para as Álgebras M1,1(E) e UT2(F) via representações de grupos
spellingShingle Identidades Polinomiais ℤ2-Graduadas para as Álgebras M1,1(E) e UT2(F) via representações de grupos
Cruz, Karina Branco da
Álgebras
Álgebra de Grassmann
M2(F)
M1,1(E)
UT2(F)
Teoria de representação de grupo
Identidades polinomiais
Identidades polinomiais graduadas
Group representation theory
Polinomial identities
Graded polinomial identities
Grassmann algebra
Algebras
CIENCIAS EXATAS E DA TERRA::MATEMATICA::ALGEBRA
title_short Identidades Polinomiais ℤ2-Graduadas para as Álgebras M1,1(E) e UT2(F) via representações de grupos
title_full Identidades Polinomiais ℤ2-Graduadas para as Álgebras M1,1(E) e UT2(F) via representações de grupos
title_fullStr Identidades Polinomiais ℤ2-Graduadas para as Álgebras M1,1(E) e UT2(F) via representações de grupos
title_full_unstemmed Identidades Polinomiais ℤ2-Graduadas para as Álgebras M1,1(E) e UT2(F) via representações de grupos
title_sort Identidades Polinomiais ℤ2-Graduadas para as Álgebras M1,1(E) e UT2(F) via representações de grupos
author Cruz, Karina Branco da
author_facet Cruz, Karina Branco da
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/6948488097705610
dc.contributor.author.fl_str_mv Cruz, Karina Branco da
dc.contributor.advisor1.fl_str_mv Schützer, Waldeck
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8638200922501477
dc.contributor.authorID.fl_str_mv 800dac50-3f62-4a7c-a84a-4afccf1fd036
contributor_str_mv Schützer, Waldeck
dc.subject.por.fl_str_mv Álgebras
Álgebra de Grassmann
M2(F)
M1,1(E)
UT2(F)
Teoria de representação de grupo
Identidades polinomiais
Identidades polinomiais graduadas
topic Álgebras
Álgebra de Grassmann
M2(F)
M1,1(E)
UT2(F)
Teoria de representação de grupo
Identidades polinomiais
Identidades polinomiais graduadas
Group representation theory
Polinomial identities
Graded polinomial identities
Grassmann algebra
Algebras
CIENCIAS EXATAS E DA TERRA::MATEMATICA::ALGEBRA
dc.subject.eng.fl_str_mv Group representation theory
Polinomial identities
Graded polinomial identities
Grassmann algebra
Algebras
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA::ALGEBRA
description In this essay we will briefly study the concept of Algebra. We will introduce a little of Group Representation Theory, looking specifically at Young's Theory, which allows us to present explicitly the decomposition of the group algebra FSn into simple subalgebras, where Sn is the symmetric group of order n!. We will also talk about Polynomial Identities and Graded Polynomial Identities, and some pertinent PI-Theory's results. We will relate Symmetrical Groups Representation Theories with PI-Theory. We will show all the Z2-graded polynomial identities for the algebras M2(F) and M1,1(E), where E is the Grassmann Algebra infinitely generated over a field F of characteristic zero. Finally, we will present all G-gradings possibilities for the algebra UT2(F), of the upper triangular matrices of order two with entries in a field of characteristic zero (we will see that, up to isomorphisms, there are only two possibilities), moreover, we will find all the G-graded polynomial identities for this algebra and we will show a numerical sequence involving the graded cocaracteres.
publishDate 2017
dc.date.issued.fl_str_mv 2017-09-01
dc.date.accessioned.fl_str_mv 2018-04-13T12:55:25Z
dc.date.available.fl_str_mv 2018-04-13T12:55:25Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CRUZ, Karina Branco da. Identidades Polinomiais ℤ2-Graduadas para as Álgebras M1,1(E) e UT2(F) via representações de grupos. 2017. Dissertação (Mestrado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9745.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/ufscar/9745
identifier_str_mv CRUZ, Karina Branco da. Identidades Polinomiais ℤ2-Graduadas para as Álgebras M1,1(E) e UT2(F) via representações de grupos. 2017. Dissertação (Mestrado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2017. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9745.
url https://repositorio.ufscar.br/handle/ufscar/9745
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv c4a73419-46fa-4fa4-86b7-e9e6e810230c
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Matemática - PPGM
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstream/ufscar/9745/4/license.txt
https://repositorio.ufscar.br/bitstream/ufscar/9745/5/CRUZ_Karina_2018.pdf
https://repositorio.ufscar.br/bitstream/ufscar/9745/6/CRUZ_Karina_2018.pdf.txt
https://repositorio.ufscar.br/bitstream/ufscar/9745/7/CRUZ_Karina_2018.pdf.jpg
bitstream.checksum.fl_str_mv ae0398b6f8b235e40ad82cba6c50031d
a610d1d79a7a047509de6e375f26ef87
ed6aa943e8d90ffaeb390c0d9efda75a
dc1822cd04263f794db23fa24ee00ebd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv
_version_ 1813715588317446144