Adaptive modulation and coding based on reinforcement learning for 5G networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/69733 |
Resumo: | We design a self-exploratory reinforcement learning (RL) framework, based on the Q-learning algorithm, that enables the base station (BS) to choose a suitable modulation and coding scheme (MCS) that maximizes the spectral efficiency while maintaining a low block error rate (BLER). In this framework, the BS chooses the MCS based on the channel quality indicator (CQI) reported by the user equipment (UE). A transmission is made with the chosen MCS and the results of this transmission are converted by the BS into rewards that the BS uses to learn the suitable mapping from CQI to MCS. Comparing with a conventional fixed look-up table and the outer loop link adaptation, the proposed framework achieves superior performance in terms of spectral efficiency and BLER. |
id |
UFC-7_e464c073a4f5e31c786696bbc51913f7 |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/69733 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Adaptive modulation and coding based on reinforcement learning for 5G networksReinforcement learningAdaptive modulation and codingLink adaptationMachine learningQ-LearningInteligência artificialWe design a self-exploratory reinforcement learning (RL) framework, based on the Q-learning algorithm, that enables the base station (BS) to choose a suitable modulation and coding scheme (MCS) that maximizes the spectral efficiency while maintaining a low block error rate (BLER). In this framework, the BS chooses the MCS based on the channel quality indicator (CQI) reported by the user equipment (UE). A transmission is made with the chosen MCS and the results of this transmission are converted by the BS into rewards that the BS uses to learn the suitable mapping from CQI to MCS. Comparing with a conventional fixed look-up table and the outer loop link adaptation, the proposed framework achieves superior performance in terms of spectral efficiency and BLER.Globecom Workshops2022-12-14T18:04:43Z2022-12-14T18:04:43Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectapplication/pdfCAVALCANTI, F. R. P. et al. Adaptive modulation and coding based on reinforcement learning for 5G networks. In: GLOBECOM WORKSHOPS, 2019, Waikoloa. Anais... Waikoloa: IEEE, 2019. p. 1-6.http://www.repositorio.ufc.br/handle/riufc/69733Mota, Mateus PontesAraújo, Daniel CostaCosta Neto, Francisco HugoAlmeida, André Lima Férrer deCavalcanti, Francisco Rodrigo Portoengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2022-12-14T18:04:43Zoai:repositorio.ufc.br:riufc/69733Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:19:13.695123Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Adaptive modulation and coding based on reinforcement learning for 5G networks |
title |
Adaptive modulation and coding based on reinforcement learning for 5G networks |
spellingShingle |
Adaptive modulation and coding based on reinforcement learning for 5G networks Mota, Mateus Pontes Reinforcement learning Adaptive modulation and coding Link adaptation Machine learning Q-Learning Inteligência artificial |
title_short |
Adaptive modulation and coding based on reinforcement learning for 5G networks |
title_full |
Adaptive modulation and coding based on reinforcement learning for 5G networks |
title_fullStr |
Adaptive modulation and coding based on reinforcement learning for 5G networks |
title_full_unstemmed |
Adaptive modulation and coding based on reinforcement learning for 5G networks |
title_sort |
Adaptive modulation and coding based on reinforcement learning for 5G networks |
author |
Mota, Mateus Pontes |
author_facet |
Mota, Mateus Pontes Araújo, Daniel Costa Costa Neto, Francisco Hugo Almeida, André Lima Férrer de Cavalcanti, Francisco Rodrigo Porto |
author_role |
author |
author2 |
Araújo, Daniel Costa Costa Neto, Francisco Hugo Almeida, André Lima Férrer de Cavalcanti, Francisco Rodrigo Porto |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Mota, Mateus Pontes Araújo, Daniel Costa Costa Neto, Francisco Hugo Almeida, André Lima Férrer de Cavalcanti, Francisco Rodrigo Porto |
dc.subject.por.fl_str_mv |
Reinforcement learning Adaptive modulation and coding Link adaptation Machine learning Q-Learning Inteligência artificial |
topic |
Reinforcement learning Adaptive modulation and coding Link adaptation Machine learning Q-Learning Inteligência artificial |
description |
We design a self-exploratory reinforcement learning (RL) framework, based on the Q-learning algorithm, that enables the base station (BS) to choose a suitable modulation and coding scheme (MCS) that maximizes the spectral efficiency while maintaining a low block error rate (BLER). In this framework, the BS chooses the MCS based on the channel quality indicator (CQI) reported by the user equipment (UE). A transmission is made with the chosen MCS and the results of this transmission are converted by the BS into rewards that the BS uses to learn the suitable mapping from CQI to MCS. Comparing with a conventional fixed look-up table and the outer loop link adaptation, the proposed framework achieves superior performance in terms of spectral efficiency and BLER. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2022-12-14T18:04:43Z 2022-12-14T18:04:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
CAVALCANTI, F. R. P. et al. Adaptive modulation and coding based on reinforcement learning for 5G networks. In: GLOBECOM WORKSHOPS, 2019, Waikoloa. Anais... Waikoloa: IEEE, 2019. p. 1-6. http://www.repositorio.ufc.br/handle/riufc/69733 |
identifier_str_mv |
CAVALCANTI, F. R. P. et al. Adaptive modulation and coding based on reinforcement learning for 5G networks. In: GLOBECOM WORKSHOPS, 2019, Waikoloa. Anais... Waikoloa: IEEE, 2019. p. 1-6. |
url |
http://www.repositorio.ufc.br/handle/riufc/69733 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Globecom Workshops |
publisher.none.fl_str_mv |
Globecom Workshops |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028753566072832 |