Adaptive modulation and coding based on reinforcement learning for 5G networks

Detalhes bibliográficos
Autor(a) principal: Mota, Mateus Pontes
Data de Publicação: 2019
Outros Autores: Araújo, Daniel Costa, Costa Neto, Francisco Hugo, Almeida, André Lima Férrer de, Cavalcanti, Francisco Rodrigo Porto
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/69733
Resumo: We design a self-exploratory reinforcement learning (RL) framework, based on the Q-learning algorithm, that enables the base station (BS) to choose a suitable modulation and coding scheme (MCS) that maximizes the spectral efficiency while maintaining a low block error rate (BLER). In this framework, the BS chooses the MCS based on the channel quality indicator (CQI) reported by the user equipment (UE). A transmission is made with the chosen MCS and the results of this transmission are converted by the BS into rewards that the BS uses to learn the suitable mapping from CQI to MCS. Comparing with a conventional fixed look-up table and the outer loop link adaptation, the proposed framework achieves superior performance in terms of spectral efficiency and BLER.
id UFC-7_e464c073a4f5e31c786696bbc51913f7
oai_identifier_str oai:repositorio.ufc.br:riufc/69733
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Adaptive modulation and coding based on reinforcement learning for 5G networksReinforcement learningAdaptive modulation and codingLink adaptationMachine learningQ-LearningInteligência artificialWe design a self-exploratory reinforcement learning (RL) framework, based on the Q-learning algorithm, that enables the base station (BS) to choose a suitable modulation and coding scheme (MCS) that maximizes the spectral efficiency while maintaining a low block error rate (BLER). In this framework, the BS chooses the MCS based on the channel quality indicator (CQI) reported by the user equipment (UE). A transmission is made with the chosen MCS and the results of this transmission are converted by the BS into rewards that the BS uses to learn the suitable mapping from CQI to MCS. Comparing with a conventional fixed look-up table and the outer loop link adaptation, the proposed framework achieves superior performance in terms of spectral efficiency and BLER.Globecom Workshops2022-12-14T18:04:43Z2022-12-14T18:04:43Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectapplication/pdfCAVALCANTI, F. R. P. et al. Adaptive modulation and coding based on reinforcement learning for 5G networks. In: GLOBECOM WORKSHOPS, 2019, Waikoloa. Anais... Waikoloa: IEEE, 2019. p. 1-6.http://www.repositorio.ufc.br/handle/riufc/69733Mota, Mateus PontesAraújo, Daniel CostaCosta Neto, Francisco HugoAlmeida, André Lima Férrer deCavalcanti, Francisco Rodrigo Portoengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2022-12-14T18:04:43Zoai:repositorio.ufc.br:riufc/69733Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:19:13.695123Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Adaptive modulation and coding based on reinforcement learning for 5G networks
title Adaptive modulation and coding based on reinforcement learning for 5G networks
spellingShingle Adaptive modulation and coding based on reinforcement learning for 5G networks
Mota, Mateus Pontes
Reinforcement learning
Adaptive modulation and coding
Link adaptation
Machine learning
Q-Learning
Inteligência artificial
title_short Adaptive modulation and coding based on reinforcement learning for 5G networks
title_full Adaptive modulation and coding based on reinforcement learning for 5G networks
title_fullStr Adaptive modulation and coding based on reinforcement learning for 5G networks
title_full_unstemmed Adaptive modulation and coding based on reinforcement learning for 5G networks
title_sort Adaptive modulation and coding based on reinforcement learning for 5G networks
author Mota, Mateus Pontes
author_facet Mota, Mateus Pontes
Araújo, Daniel Costa
Costa Neto, Francisco Hugo
Almeida, André Lima Férrer de
Cavalcanti, Francisco Rodrigo Porto
author_role author
author2 Araújo, Daniel Costa
Costa Neto, Francisco Hugo
Almeida, André Lima Férrer de
Cavalcanti, Francisco Rodrigo Porto
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Mota, Mateus Pontes
Araújo, Daniel Costa
Costa Neto, Francisco Hugo
Almeida, André Lima Férrer de
Cavalcanti, Francisco Rodrigo Porto
dc.subject.por.fl_str_mv Reinforcement learning
Adaptive modulation and coding
Link adaptation
Machine learning
Q-Learning
Inteligência artificial
topic Reinforcement learning
Adaptive modulation and coding
Link adaptation
Machine learning
Q-Learning
Inteligência artificial
description We design a self-exploratory reinforcement learning (RL) framework, based on the Q-learning algorithm, that enables the base station (BS) to choose a suitable modulation and coding scheme (MCS) that maximizes the spectral efficiency while maintaining a low block error rate (BLER). In this framework, the BS chooses the MCS based on the channel quality indicator (CQI) reported by the user equipment (UE). A transmission is made with the chosen MCS and the results of this transmission are converted by the BS into rewards that the BS uses to learn the suitable mapping from CQI to MCS. Comparing with a conventional fixed look-up table and the outer loop link adaptation, the proposed framework achieves superior performance in terms of spectral efficiency and BLER.
publishDate 2019
dc.date.none.fl_str_mv 2019
2022-12-14T18:04:43Z
2022-12-14T18:04:43Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv CAVALCANTI, F. R. P. et al. Adaptive modulation and coding based on reinforcement learning for 5G networks. In: GLOBECOM WORKSHOPS, 2019, Waikoloa. Anais... Waikoloa: IEEE, 2019. p. 1-6.
http://www.repositorio.ufc.br/handle/riufc/69733
identifier_str_mv CAVALCANTI, F. R. P. et al. Adaptive modulation and coding based on reinforcement learning for 5G networks. In: GLOBECOM WORKSHOPS, 2019, Waikoloa. Anais... Waikoloa: IEEE, 2019. p. 1-6.
url http://www.repositorio.ufc.br/handle/riufc/69733
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Globecom Workshops
publisher.none.fl_str_mv Globecom Workshops
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813028753566072832