Lower bounds for eigenvalues of minimal hypersurfaces embedded in euclidean sphere

Detalhes bibliográficos
Autor(a) principal: Tiago MendonÃa Lucena de Veras
Data de Publicação: 2011
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFC
Texto Completo: http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=6654
Resumo: Sejam Mn uma variedade Riemanniana fechada orientada e x : Mn → Sn+1 С Rn+2 uma imersÃo mÃnima de Mn na esfera unitÃria Euclidiana. Sabemos, pelo Teorema de Takahashi que Δx + nx=0, com x(p)= (x1(p),..., xn+2(p))e Δx(p)= Δx (Δx1(p), ..., Δxn+2 onde Δ denota o Laplaciano em M na mÃtrica induzida por x, veja [11]. Segue que n à uma cota superior para o primeiro autovalor λ1 de Δ. Quando x à um mergulho, em 1982 foi conjecturado por Yau em [12] que primeiro autovalor do Laplaciano, denotado por λ1, à igual a n. O primeiro resultado global na direÃÃo de tal problema foi obtido por Choi e Wang em [4] onde foi provado que λ1 ≥ n/2. No artigo [2] Barros e Bessa mostraram que λ1 ≥ n/2 + С(Mn,x), onde С(Mn,x) à uma constante positiva que depende de Mn e x. O objetivo deste trabalho à apresentar algumas condiÃÃes para o primeiro autovalor do Laplaciano seja igual a n, em outras palavras, a conjectura de Yau à verdadeira sob estas condiÃÃes.
id UFC_9aa4d9a5ce6af3fa4a15199466a9130e
oai_identifier_str oai:www.teses.ufc.br:4803
network_acronym_str UFC
network_name_str Biblioteca Digital de Teses e Dissertações da UFC
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisLower bounds for eigenvalues of minimal hypersurfaces embedded in euclidean sphereCota inferior para autovalores de hipersuperfÃcies mÃnimas mergulhadas na esfera euclidiana2011-02-01AbdÃnago Alves de Barros12712647491http://lattes.cnpq.br/9335188048662483Fernanda Ester Camillo Camargo26924448844http://lattes.cnpq.br/9019965353226310 Paulo Alexandre AraÃjo Sousa82244189368http://lattes.cnpq.br/951703356146448403829128452http://lattes.cnpq.br/0549911789240539 Tiago MendonÃa Lucena de VerasUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em MatemÃticaUFCBRGEOMETRIA DIFERENCIALSejam Mn uma variedade Riemanniana fechada orientada e x : Mn → Sn+1 С Rn+2 uma imersÃo mÃnima de Mn na esfera unitÃria Euclidiana. Sabemos, pelo Teorema de Takahashi que Δx + nx=0, com x(p)= (x1(p),..., xn+2(p))e Δx(p)= Δx (Δx1(p), ..., Δxn+2 onde Δ denota o Laplaciano em M na mÃtrica induzida por x, veja [11]. Segue que n à uma cota superior para o primeiro autovalor λ1 de Δ. Quando x à um mergulho, em 1982 foi conjecturado por Yau em [12] que primeiro autovalor do Laplaciano, denotado por λ1, à igual a n. O primeiro resultado global na direÃÃo de tal problema foi obtido por Choi e Wang em [4] onde foi provado que λ1 ≥ n/2. No artigo [2] Barros e Bessa mostraram que λ1 ≥ n/2 + С(Mn,x), onde С(Mn,x) à uma constante positiva que depende de Mn e x. O objetivo deste trabalho à apresentar algumas condiÃÃes para o primeiro autovalor do Laplaciano seja igual a n, em outras palavras, a conjectura de Yau à verdadeira sob estas condiÃÃes. Let M be a closed oriented Riemannian manifold and x : Mn → Sn+1 С Rn+2 a minimal immersion of Mn in the Euclidean unit sphere. We know by Takahashiâs theorem Δx + nx=0, where x (p) = (x1 (p ),..., xn +2 (p)) and Δx (p) = (Δx1 (p), ... , Δxn +2 (p)) where Δ denotes the Laplacian on M the induced metric for x, see [11]. It follows that n is an upper bound for the first eigenvalue λ1 of Δ. When x is a embedded in 1982 was conjectured by Yau in [12] that the first eigenvalue of the Laplacian, denoted by λ1, is equal n. The first global result in the direction of such problem was obtained by Choi and Wang in cite Choi where it was proved that λ1 ≥ n / 2. In the article [2] Barros and Bessa showed that λ1 ≥ n / 2 + С (Mn, x), where С (Mn, x) is a positive constant which depends on Mn and x. The aim of this work is to present some conditions for the first eigenvalue of the Laplacian is equal to n, in other words, Yau's conjecture is true under these conditions. Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgicohttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=6654application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:19:43Zmail@mail.com -
dc.title.en.fl_str_mv Lower bounds for eigenvalues of minimal hypersurfaces embedded in euclidean sphere
dc.title.alternative.pt.fl_str_mv Cota inferior para autovalores de hipersuperfÃcies mÃnimas mergulhadas na esfera euclidiana
title Lower bounds for eigenvalues of minimal hypersurfaces embedded in euclidean sphere
spellingShingle Lower bounds for eigenvalues of minimal hypersurfaces embedded in euclidean sphere
Tiago MendonÃa Lucena de Veras
GEOMETRIA DIFERENCIAL
title_short Lower bounds for eigenvalues of minimal hypersurfaces embedded in euclidean sphere
title_full Lower bounds for eigenvalues of minimal hypersurfaces embedded in euclidean sphere
title_fullStr Lower bounds for eigenvalues of minimal hypersurfaces embedded in euclidean sphere
title_full_unstemmed Lower bounds for eigenvalues of minimal hypersurfaces embedded in euclidean sphere
title_sort Lower bounds for eigenvalues of minimal hypersurfaces embedded in euclidean sphere
author Tiago MendonÃa Lucena de Veras
author_facet Tiago MendonÃa Lucena de Veras
author_role author
dc.contributor.advisor1.fl_str_mv AbdÃnago Alves de Barros
dc.contributor.advisor1ID.fl_str_mv 12712647491
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9335188048662483
dc.contributor.referee1.fl_str_mv Fernanda Ester Camillo Camargo
dc.contributor.referee1ID.fl_str_mv 26924448844
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/9019965353226310
dc.contributor.referee2.fl_str_mv Paulo Alexandre AraÃjo Sousa
dc.contributor.referee2ID.fl_str_mv 82244189368
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/9517033561464484
dc.contributor.authorID.fl_str_mv 03829128452
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0549911789240539
dc.contributor.author.fl_str_mv Tiago MendonÃa Lucena de Veras
contributor_str_mv AbdÃnago Alves de Barros
Fernanda Ester Camillo Camargo
Paulo Alexandre AraÃjo Sousa
dc.subject.cnpq.fl_str_mv GEOMETRIA DIFERENCIAL
topic GEOMETRIA DIFERENCIAL
dc.description.sponsorship.fl_txt_mv Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico
dc.description.abstract.por.fl_txt_mv Sejam Mn uma variedade Riemanniana fechada orientada e x : Mn → Sn+1 С Rn+2 uma imersÃo mÃnima de Mn na esfera unitÃria Euclidiana. Sabemos, pelo Teorema de Takahashi que Δx + nx=0, com x(p)= (x1(p),..., xn+2(p))e Δx(p)= Δx (Δx1(p), ..., Δxn+2 onde Δ denota o Laplaciano em M na mÃtrica induzida por x, veja [11]. Segue que n à uma cota superior para o primeiro autovalor λ1 de Δ. Quando x à um mergulho, em 1982 foi conjecturado por Yau em [12] que primeiro autovalor do Laplaciano, denotado por λ1, à igual a n. O primeiro resultado global na direÃÃo de tal problema foi obtido por Choi e Wang em [4] onde foi provado que λ1 ≥ n/2. No artigo [2] Barros e Bessa mostraram que λ1 ≥ n/2 + С(Mn,x), onde С(Mn,x) à uma constante positiva que depende de Mn e x. O objetivo deste trabalho à apresentar algumas condiÃÃes para o primeiro autovalor do Laplaciano seja igual a n, em outras palavras, a conjectura de Yau à verdadeira sob estas condiÃÃes.
dc.description.abstract.eng.fl_txt_mv Let M be a closed oriented Riemannian manifold and x : Mn → Sn+1 С Rn+2 a minimal immersion of Mn in the Euclidean unit sphere. We know by Takahashiâs theorem Δx + nx=0, where x (p) = (x1 (p ),..., xn +2 (p)) and Δx (p) = (Δx1 (p), ... , Δxn +2 (p)) where Δ denotes the Laplacian on M the induced metric for x, see [11]. It follows that n is an upper bound for the first eigenvalue λ1 of Δ. When x is a embedded in 1982 was conjectured by Yau in [12] that the first eigenvalue of the Laplacian, denoted by λ1, is equal n. The first global result in the direction of such problem was obtained by Choi and Wang in cite Choi where it was proved that λ1 ≥ n / 2. In the article [2] Barros and Bessa showed that λ1 ≥ n / 2 + С (Mn, x), where С (Mn, x) is a positive constant which depends on Mn and x. The aim of this work is to present some conditions for the first eigenvalue of the Laplacian is equal to n, in other words, Yau's conjecture is true under these conditions.
description Sejam Mn uma variedade Riemanniana fechada orientada e x : Mn → Sn+1 С Rn+2 uma imersÃo mÃnima de Mn na esfera unitÃria Euclidiana. Sabemos, pelo Teorema de Takahashi que Δx + nx=0, com x(p)= (x1(p),..., xn+2(p))e Δx(p)= Δx (Δx1(p), ..., Δxn+2 onde Δ denota o Laplaciano em M na mÃtrica induzida por x, veja [11]. Segue que n à uma cota superior para o primeiro autovalor λ1 de Δ. Quando x à um mergulho, em 1982 foi conjecturado por Yau em [12] que primeiro autovalor do Laplaciano, denotado por λ1, à igual a n. O primeiro resultado global na direÃÃo de tal problema foi obtido por Choi e Wang em [4] onde foi provado que λ1 ≥ n/2. No artigo [2] Barros e Bessa mostraram que λ1 ≥ n/2 + С(Mn,x), onde С(Mn,x) à uma constante positiva que depende de Mn e x. O objetivo deste trabalho à apresentar algumas condiÃÃes para o primeiro autovalor do Laplaciano seja igual a n, em outras palavras, a conjectura de Yau à verdadeira sob estas condiÃÃes.
publishDate 2011
dc.date.issued.fl_str_mv 2011-02-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=6654
url http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=6654
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.publisher.program.fl_str_mv Programa de PÃs-GraduaÃÃo em MatemÃtica
dc.publisher.initials.fl_str_mv UFC
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Universidade Federal do CearÃ
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFC
instname:Universidade Federal do Ceará
instacron:UFC
reponame_str Biblioteca Digital de Teses e Dissertações da UFC
collection Biblioteca Digital de Teses e Dissertações da UFC
instname_str Universidade Federal do Ceará
instacron_str UFC
institution UFC
repository.name.fl_str_mv -
repository.mail.fl_str_mv mail@mail.com
_version_ 1643295152188424192