Lower bounds for eigenvalues of minimal hypersurfaces embedded in euclidean sphere
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFC |
Texto Completo: | http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=6654 |
Resumo: | Sejam Mn uma variedade Riemanniana fechada orientada e x : Mn → Sn+1 С Rn+2 uma imersÃo mÃnima de Mn na esfera unitÃria Euclidiana. Sabemos, pelo Teorema de Takahashi que Δx + nx=0, com x(p)= (x1(p),..., xn+2(p))e Δx(p)= Δx (Δx1(p), ..., Δxn+2 onde Δ denota o Laplaciano em M na mÃtrica induzida por x, veja [11]. Segue que n à uma cota superior para o primeiro autovalor λ1 de Δ. Quando x à um mergulho, em 1982 foi conjecturado por Yau em [12] que primeiro autovalor do Laplaciano, denotado por λ1, à igual a n. O primeiro resultado global na direÃÃo de tal problema foi obtido por Choi e Wang em [4] onde foi provado que λ1 ≥ n/2. No artigo [2] Barros e Bessa mostraram que λ1 ≥ n/2 + С(Mn,x), onde С(Mn,x) à uma constante positiva que depende de Mn e x. O objetivo deste trabalho à apresentar algumas condiÃÃes para o primeiro autovalor do Laplaciano seja igual a n, em outras palavras, a conjectura de Yau à verdadeira sob estas condiÃÃes. |
id |
UFC_9aa4d9a5ce6af3fa4a15199466a9130e |
---|---|
oai_identifier_str |
oai:www.teses.ufc.br:4803 |
network_acronym_str |
UFC |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFC |
spelling |
info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisLower bounds for eigenvalues of minimal hypersurfaces embedded in euclidean sphereCota inferior para autovalores de hipersuperfÃcies mÃnimas mergulhadas na esfera euclidiana2011-02-01AbdÃnago Alves de Barros12712647491http://lattes.cnpq.br/9335188048662483Fernanda Ester Camillo Camargo26924448844http://lattes.cnpq.br/9019965353226310 Paulo Alexandre AraÃjo Sousa82244189368http://lattes.cnpq.br/951703356146448403829128452http://lattes.cnpq.br/0549911789240539 Tiago MendonÃa Lucena de VerasUniversidade Federal do CearÃPrograma de PÃs-GraduaÃÃo em MatemÃticaUFCBRGEOMETRIA DIFERENCIALSejam Mn uma variedade Riemanniana fechada orientada e x : Mn → Sn+1 С Rn+2 uma imersÃo mÃnima de Mn na esfera unitÃria Euclidiana. Sabemos, pelo Teorema de Takahashi que Δx + nx=0, com x(p)= (x1(p),..., xn+2(p))e Δx(p)= Δx (Δx1(p), ..., Δxn+2 onde Δ denota o Laplaciano em M na mÃtrica induzida por x, veja [11]. Segue que n à uma cota superior para o primeiro autovalor λ1 de Δ. Quando x à um mergulho, em 1982 foi conjecturado por Yau em [12] que primeiro autovalor do Laplaciano, denotado por λ1, à igual a n. O primeiro resultado global na direÃÃo de tal problema foi obtido por Choi e Wang em [4] onde foi provado que λ1 ≥ n/2. No artigo [2] Barros e Bessa mostraram que λ1 ≥ n/2 + С(Mn,x), onde С(Mn,x) à uma constante positiva que depende de Mn e x. O objetivo deste trabalho à apresentar algumas condiÃÃes para o primeiro autovalor do Laplaciano seja igual a n, em outras palavras, a conjectura de Yau à verdadeira sob estas condiÃÃes. Let M be a closed oriented Riemannian manifold and x : Mn → Sn+1 С Rn+2 a minimal immersion of Mn in the Euclidean unit sphere. We know by Takahashiâs theorem Δx + nx=0, where x (p) = (x1 (p ),..., xn +2 (p)) and Δx (p) = (Δx1 (p), ... , Δxn +2 (p)) where Δ denotes the Laplacian on M the induced metric for x, see [11]. It follows that n is an upper bound for the first eigenvalue λ1 of Δ. When x is a embedded in 1982 was conjectured by Yau in [12] that the first eigenvalue of the Laplacian, denoted by λ1, is equal n. The first global result in the direction of such problem was obtained by Choi and Wang in cite Choi where it was proved that λ1 ≥ n / 2. In the article [2] Barros and Bessa showed that λ1 ≥ n / 2 + С (Mn, x), where С (Mn, x) is a positive constant which depends on Mn and x. The aim of this work is to present some conditions for the first eigenvalue of the Laplacian is equal to n, in other words, Yau's conjecture is true under these conditions. Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgicohttp://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=6654application/pdfinfo:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações da UFCinstname:Universidade Federal do Cearáinstacron:UFC2019-01-21T11:19:43Zmail@mail.com - |
dc.title.en.fl_str_mv |
Lower bounds for eigenvalues of minimal hypersurfaces embedded in euclidean sphere |
dc.title.alternative.pt.fl_str_mv |
Cota inferior para autovalores de hipersuperfÃcies mÃnimas mergulhadas na esfera euclidiana |
title |
Lower bounds for eigenvalues of minimal hypersurfaces embedded in euclidean sphere |
spellingShingle |
Lower bounds for eigenvalues of minimal hypersurfaces embedded in euclidean sphere Tiago MendonÃa Lucena de Veras GEOMETRIA DIFERENCIAL |
title_short |
Lower bounds for eigenvalues of minimal hypersurfaces embedded in euclidean sphere |
title_full |
Lower bounds for eigenvalues of minimal hypersurfaces embedded in euclidean sphere |
title_fullStr |
Lower bounds for eigenvalues of minimal hypersurfaces embedded in euclidean sphere |
title_full_unstemmed |
Lower bounds for eigenvalues of minimal hypersurfaces embedded in euclidean sphere |
title_sort |
Lower bounds for eigenvalues of minimal hypersurfaces embedded in euclidean sphere |
author |
Tiago MendonÃa Lucena de Veras |
author_facet |
Tiago MendonÃa Lucena de Veras |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
AbdÃnago Alves de Barros |
dc.contributor.advisor1ID.fl_str_mv |
12712647491 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/9335188048662483 |
dc.contributor.referee1.fl_str_mv |
Fernanda Ester Camillo Camargo |
dc.contributor.referee1ID.fl_str_mv |
26924448844 |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/9019965353226310 |
dc.contributor.referee2.fl_str_mv |
Paulo Alexandre AraÃjo Sousa |
dc.contributor.referee2ID.fl_str_mv |
82244189368 |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/9517033561464484 |
dc.contributor.authorID.fl_str_mv |
03829128452 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/0549911789240539 |
dc.contributor.author.fl_str_mv |
Tiago MendonÃa Lucena de Veras |
contributor_str_mv |
AbdÃnago Alves de Barros Fernanda Ester Camillo Camargo Paulo Alexandre AraÃjo Sousa |
dc.subject.cnpq.fl_str_mv |
GEOMETRIA DIFERENCIAL |
topic |
GEOMETRIA DIFERENCIAL |
dc.description.sponsorship.fl_txt_mv |
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico |
dc.description.abstract.por.fl_txt_mv |
Sejam Mn uma variedade Riemanniana fechada orientada e x : Mn → Sn+1 С Rn+2 uma imersÃo mÃnima de Mn na esfera unitÃria Euclidiana. Sabemos, pelo Teorema de Takahashi que Δx + nx=0, com x(p)= (x1(p),..., xn+2(p))e Δx(p)= Δx (Δx1(p), ..., Δxn+2 onde Δ denota o Laplaciano em M na mÃtrica induzida por x, veja [11]. Segue que n à uma cota superior para o primeiro autovalor λ1 de Δ. Quando x à um mergulho, em 1982 foi conjecturado por Yau em [12] que primeiro autovalor do Laplaciano, denotado por λ1, à igual a n. O primeiro resultado global na direÃÃo de tal problema foi obtido por Choi e Wang em [4] onde foi provado que λ1 ≥ n/2. No artigo [2] Barros e Bessa mostraram que λ1 ≥ n/2 + С(Mn,x), onde С(Mn,x) à uma constante positiva que depende de Mn e x. O objetivo deste trabalho à apresentar algumas condiÃÃes para o primeiro autovalor do Laplaciano seja igual a n, em outras palavras, a conjectura de Yau à verdadeira sob estas condiÃÃes. |
dc.description.abstract.eng.fl_txt_mv |
Let M be a closed oriented Riemannian manifold and x : Mn → Sn+1 С Rn+2 a minimal immersion of Mn in the Euclidean unit sphere. We know by Takahashiâs theorem Δx + nx=0, where x (p) = (x1 (p ),..., xn +2 (p)) and Δx (p) = (Δx1 (p), ... , Δxn +2 (p)) where Δ denotes the Laplacian on M the induced metric for x, see [11]. It follows that n is an upper bound for the first eigenvalue λ1 of Δ. When x is a embedded in 1982 was conjectured by Yau in [12] that the first eigenvalue of the Laplacian, denoted by λ1, is equal n. The first global result in the direction of such problem was obtained by Choi and Wang in cite Choi where it was proved that λ1 ≥ n / 2. In the article [2] Barros and Bessa showed that λ1 ≥ n / 2 + С (Mn, x), where С (Mn, x) is a positive constant which depends on Mn and x. The aim of this work is to present some conditions for the first eigenvalue of the Laplacian is equal to n, in other words, Yau's conjecture is true under these conditions. |
description |
Sejam Mn uma variedade Riemanniana fechada orientada e x : Mn → Sn+1 С Rn+2 uma imersÃo mÃnima de Mn na esfera unitÃria Euclidiana. Sabemos, pelo Teorema de Takahashi que Δx + nx=0, com x(p)= (x1(p),..., xn+2(p))e Δx(p)= Δx (Δx1(p), ..., Δxn+2 onde Δ denota o Laplaciano em M na mÃtrica induzida por x, veja [11]. Segue que n à uma cota superior para o primeiro autovalor λ1 de Δ. Quando x à um mergulho, em 1982 foi conjecturado por Yau em [12] que primeiro autovalor do Laplaciano, denotado por λ1, à igual a n. O primeiro resultado global na direÃÃo de tal problema foi obtido por Choi e Wang em [4] onde foi provado que λ1 ≥ n/2. No artigo [2] Barros e Bessa mostraram que λ1 ≥ n/2 + С(Mn,x), onde С(Mn,x) à uma constante positiva que depende de Mn e x. O objetivo deste trabalho à apresentar algumas condiÃÃes para o primeiro autovalor do Laplaciano seja igual a n, em outras palavras, a conjectura de Yau à verdadeira sob estas condiÃÃes. |
publishDate |
2011 |
dc.date.issued.fl_str_mv |
2011-02-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
status_str |
publishedVersion |
format |
masterThesis |
dc.identifier.uri.fl_str_mv |
http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=6654 |
url |
http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=6654 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Cearà |
dc.publisher.program.fl_str_mv |
Programa de PÃs-GraduaÃÃo em MatemÃtica |
dc.publisher.initials.fl_str_mv |
UFC |
dc.publisher.country.fl_str_mv |
BR |
publisher.none.fl_str_mv |
Universidade Federal do Cearà |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFC instname:Universidade Federal do Ceará instacron:UFC |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFC |
collection |
Biblioteca Digital de Teses e Dissertações da UFC |
instname_str |
Universidade Federal do Ceará |
instacron_str |
UFC |
institution |
UFC |
repository.name.fl_str_mv |
-
|
repository.mail.fl_str_mv |
mail@mail.com |
_version_ |
1643295152188424192 |