Identification of SPAM messages using an approach inspired on the immune system

Detalhes bibliográficos
Autor(a) principal: Guzella, Thiago dos Santos
Data de Publicação: 2015
Outros Autores: Santos, Tomaz Aroldo Mota, Caminhas, Walmir Matos, Uchôa, Joaquim Quinteiro
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/9645
Resumo: In this paper, an immune-inspired model, named innate and adaptive artificial immune system (IA-AIS) is proposed and applied to the problem of identification of unsolicited bulk e-mail messages (SPAM). It integrates entities analogous to macrophages, B and T lymphocytes, modeling both the innate and the adaptive immune systems. An implementation of the algorithm was capable of identifying more than 99% of legitimate or SPAM messages in particular parameter configurations. It was compared to an optimized version of the na¨ıve Bayes classifier, which has been attained extremely high correct classification rates. It has been concluded that IA-AIS has a greater ability to identify SPAM messages, although the identification of legitimate messages is not as high as that of the implemented na¨ıve Bayes classifier. © 2008 Elsevier Ireland Ltd. All rights reserved.
id UFLA_96a146bcc4836d59d2fefcc887191a7f
oai_identifier_str oai:localhost:1/9645
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Identification of SPAM messages using an approach inspired on the immune systemArtificial immune systemSPAM identificationContinuous learningInnate and adaptive immunityRegulatory t cellsIn this paper, an immune-inspired model, named innate and adaptive artificial immune system (IA-AIS) is proposed and applied to the problem of identification of unsolicited bulk e-mail messages (SPAM). It integrates entities analogous to macrophages, B and T lymphocytes, modeling both the innate and the adaptive immune systems. An implementation of the algorithm was capable of identifying more than 99% of legitimate or SPAM messages in particular parameter configurations. It was compared to an optimized version of the na¨ıve Bayes classifier, which has been attained extremely high correct classification rates. It has been concluded that IA-AIS has a greater ability to identify SPAM messages, although the identification of legitimate messages is not as high as that of the implemented na¨ıve Bayes classifier. © 2008 Elsevier Ireland Ltd. All rights reserved.2015-05-21T20:44:05Z2015-05-21T20:44:05Z2015-05-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.ufla.br/jspui/handle/1/9645Biosystems, Volume 92, Issue 3, June 2008, Pages 215-225reponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAGuzella, Thiago dos SantosSantos, Tomaz Aroldo MotaCaminhas, Walmir MatosUchôa, Joaquim Quinteiroinfo:eu-repo/semantics/openAccesseng2023-05-03T13:13:27Zoai:localhost:1/9645Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-03T13:13:27Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Identification of SPAM messages using an approach inspired on the immune system
title Identification of SPAM messages using an approach inspired on the immune system
spellingShingle Identification of SPAM messages using an approach inspired on the immune system
Guzella, Thiago dos Santos
Artificial immune system
SPAM identification
Continuous learning
Innate and adaptive immunity
Regulatory t cells
title_short Identification of SPAM messages using an approach inspired on the immune system
title_full Identification of SPAM messages using an approach inspired on the immune system
title_fullStr Identification of SPAM messages using an approach inspired on the immune system
title_full_unstemmed Identification of SPAM messages using an approach inspired on the immune system
title_sort Identification of SPAM messages using an approach inspired on the immune system
author Guzella, Thiago dos Santos
author_facet Guzella, Thiago dos Santos
Santos, Tomaz Aroldo Mota
Caminhas, Walmir Matos
Uchôa, Joaquim Quinteiro
author_role author
author2 Santos, Tomaz Aroldo Mota
Caminhas, Walmir Matos
Uchôa, Joaquim Quinteiro
author2_role author
author
author
dc.contributor.author.fl_str_mv Guzella, Thiago dos Santos
Santos, Tomaz Aroldo Mota
Caminhas, Walmir Matos
Uchôa, Joaquim Quinteiro
dc.subject.por.fl_str_mv Artificial immune system
SPAM identification
Continuous learning
Innate and adaptive immunity
Regulatory t cells
topic Artificial immune system
SPAM identification
Continuous learning
Innate and adaptive immunity
Regulatory t cells
description In this paper, an immune-inspired model, named innate and adaptive artificial immune system (IA-AIS) is proposed and applied to the problem of identification of unsolicited bulk e-mail messages (SPAM). It integrates entities analogous to macrophages, B and T lymphocytes, modeling both the innate and the adaptive immune systems. An implementation of the algorithm was capable of identifying more than 99% of legitimate or SPAM messages in particular parameter configurations. It was compared to an optimized version of the na¨ıve Bayes classifier, which has been attained extremely high correct classification rates. It has been concluded that IA-AIS has a greater ability to identify SPAM messages, although the identification of legitimate messages is not as high as that of the implemented na¨ıve Bayes classifier. © 2008 Elsevier Ireland Ltd. All rights reserved.
publishDate 2015
dc.date.none.fl_str_mv 2015-05-21T20:44:05Z
2015-05-21T20:44:05Z
2015-05-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufla.br/jspui/handle/1/9645
url http://repositorio.ufla.br/jspui/handle/1/9645
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Biosystems, Volume 92, Issue 3, June 2008, Pages 215-225
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439117276676096