Vitoria pineapple yield predictions by neuro-fuzzy modeling and linear regression
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFMG |
Texto Completo: | https://doi.org/10.14295/cs.v13.3719 http://hdl.handle.net/1843/61681 |
Resumo: | Hybrid intelligent systems that combine artificial intelligence techniques, such as neural networks and fuzzy logic, have become common for the development of complex models to predict and estimate variable parameters. The objective of this study was to compare predictions of Vitoria pineapple yields by Adaptive-Network-Based Fuzzy Inference Systems (ANFIS) and linear or quadratic regression models. The prediction models developed calculate the fruit fresh weight based on the D leaf fresh weight (DLFW) and stem diameter (SD), measured at the time of floral induction. ANFIS were developed using the genfisOptions function of the Neuro Fuzzy Designer toolbox of the Matlab program (Mathworks®- Neuro Fuzzy Designer, R2018a), considering DLFW and SD as the entry parameters, single and combined. The yield prediction error was calculated using the root mean square error (RMSE). The RMSE found for all ANFIS developed were lower than that predicted by linear or quadratic regression models. The lowest RMSE was obtained when the parameters DLFW and SD were combined for the development of the ANFIS. Therefore, the results showed that the use of neuro-fuzzy modeling (ANFIS) for predicting Vitoria pineapple yield presents better results than the use of linear or quadratic regression models. |
id |
UFMG_eb253811617320878bfcdeb6235c6c5e |
---|---|
oai_identifier_str |
oai:repositorio.ufmg.br:1843/61681 |
network_acronym_str |
UFMG |
network_name_str |
Repositório Institucional da UFMG |
repository_id_str |
|
spelling |
Vitoria pineapple yield predictions by neuro-fuzzy modeling and linear regressionAgriculture 4.0Ananas comosus var. comosusArtificial intelligenceFruit growingFrutas - CultivoAbacaxiInteligência artificialRedes neurais (Computação)Lógica difusaHybrid intelligent systems that combine artificial intelligence techniques, such as neural networks and fuzzy logic, have become common for the development of complex models to predict and estimate variable parameters. The objective of this study was to compare predictions of Vitoria pineapple yields by Adaptive-Network-Based Fuzzy Inference Systems (ANFIS) and linear or quadratic regression models. The prediction models developed calculate the fruit fresh weight based on the D leaf fresh weight (DLFW) and stem diameter (SD), measured at the time of floral induction. ANFIS were developed using the genfisOptions function of the Neuro Fuzzy Designer toolbox of the Matlab program (Mathworks®- Neuro Fuzzy Designer, R2018a), considering DLFW and SD as the entry parameters, single and combined. The yield prediction error was calculated using the root mean square error (RMSE). The RMSE found for all ANFIS developed were lower than that predicted by linear or quadratic regression models. The lowest RMSE was obtained when the parameters DLFW and SD were combined for the development of the ANFIS. Therefore, the results showed that the use of neuro-fuzzy modeling (ANFIS) for predicting Vitoria pineapple yield presents better results than the use of linear or quadratic regression models.CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas GeraisOutra AgênciaUniversidade Federal de Minas GeraisBrasilICA - INSTITUTO DE CIÊNCIAS AGRÁRIASUFMG2023-12-04T16:45:03Z2023-12-04T16:45:03Z2022-08-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.14295/cs.v13.37192177-5133http://hdl.handle.net/1843/61681engComunicata ScientiaePaula Patrícia Oliveira da SilvaFrankley Gustavo Fernandes MesquitaGuilherme Barbosa VilelaRodinei Facco PegoraroVictor Martins MaiaMarcos Koiti Kondoinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2023-12-04T20:57:54Zoai:repositorio.ufmg.br:1843/61681Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2023-12-04T20:57:54Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false |
dc.title.none.fl_str_mv |
Vitoria pineapple yield predictions by neuro-fuzzy modeling and linear regression |
title |
Vitoria pineapple yield predictions by neuro-fuzzy modeling and linear regression |
spellingShingle |
Vitoria pineapple yield predictions by neuro-fuzzy modeling and linear regression Paula Patrícia Oliveira da Silva Agriculture 4.0 Ananas comosus var. comosus Artificial intelligence Fruit growing Frutas - Cultivo Abacaxi Inteligência artificial Redes neurais (Computação) Lógica difusa |
title_short |
Vitoria pineapple yield predictions by neuro-fuzzy modeling and linear regression |
title_full |
Vitoria pineapple yield predictions by neuro-fuzzy modeling and linear regression |
title_fullStr |
Vitoria pineapple yield predictions by neuro-fuzzy modeling and linear regression |
title_full_unstemmed |
Vitoria pineapple yield predictions by neuro-fuzzy modeling and linear regression |
title_sort |
Vitoria pineapple yield predictions by neuro-fuzzy modeling and linear regression |
author |
Paula Patrícia Oliveira da Silva |
author_facet |
Paula Patrícia Oliveira da Silva Frankley Gustavo Fernandes Mesquita Guilherme Barbosa Vilela Rodinei Facco Pegoraro Victor Martins Maia Marcos Koiti Kondo |
author_role |
author |
author2 |
Frankley Gustavo Fernandes Mesquita Guilherme Barbosa Vilela Rodinei Facco Pegoraro Victor Martins Maia Marcos Koiti Kondo |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Paula Patrícia Oliveira da Silva Frankley Gustavo Fernandes Mesquita Guilherme Barbosa Vilela Rodinei Facco Pegoraro Victor Martins Maia Marcos Koiti Kondo |
dc.subject.por.fl_str_mv |
Agriculture 4.0 Ananas comosus var. comosus Artificial intelligence Fruit growing Frutas - Cultivo Abacaxi Inteligência artificial Redes neurais (Computação) Lógica difusa |
topic |
Agriculture 4.0 Ananas comosus var. comosus Artificial intelligence Fruit growing Frutas - Cultivo Abacaxi Inteligência artificial Redes neurais (Computação) Lógica difusa |
description |
Hybrid intelligent systems that combine artificial intelligence techniques, such as neural networks and fuzzy logic, have become common for the development of complex models to predict and estimate variable parameters. The objective of this study was to compare predictions of Vitoria pineapple yields by Adaptive-Network-Based Fuzzy Inference Systems (ANFIS) and linear or quadratic regression models. The prediction models developed calculate the fruit fresh weight based on the D leaf fresh weight (DLFW) and stem diameter (SD), measured at the time of floral induction. ANFIS were developed using the genfisOptions function of the Neuro Fuzzy Designer toolbox of the Matlab program (Mathworks®- Neuro Fuzzy Designer, R2018a), considering DLFW and SD as the entry parameters, single and combined. The yield prediction error was calculated using the root mean square error (RMSE). The RMSE found for all ANFIS developed were lower than that predicted by linear or quadratic regression models. The lowest RMSE was obtained when the parameters DLFW and SD were combined for the development of the ANFIS. Therefore, the results showed that the use of neuro-fuzzy modeling (ANFIS) for predicting Vitoria pineapple yield presents better results than the use of linear or quadratic regression models. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08-06 2023-12-04T16:45:03Z 2023-12-04T16:45:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.14295/cs.v13.3719 2177-5133 http://hdl.handle.net/1843/61681 |
url |
https://doi.org/10.14295/cs.v13.3719 http://hdl.handle.net/1843/61681 |
identifier_str_mv |
2177-5133 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Comunicata Scientiae |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais Brasil ICA - INSTITUTO DE CIÊNCIAS AGRÁRIAS UFMG |
publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais Brasil ICA - INSTITUTO DE CIÊNCIAS AGRÁRIAS UFMG |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMG instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
instname_str |
Universidade Federal de Minas Gerais (UFMG) |
instacron_str |
UFMG |
institution |
UFMG |
reponame_str |
Repositório Institucional da UFMG |
collection |
Repositório Institucional da UFMG |
repository.name.fl_str_mv |
Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG) |
repository.mail.fl_str_mv |
repositorio@ufmg.br |
_version_ |
1823248018188533760 |