A construção do conceito de quadriláteros notáveis no 6º ano do ensino fundamental: um estudo sob a luz da teoria vanhieliana

Detalhes bibliográficos
Autor(a) principal: COSTA, André Pereira da
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000kfjt
Texto Completo: https://repositorio.ufpe.br/handle/123456789/17129
Resumo: A presente dissertação teve por objetivo analisar os efeitos de uma sequência didática para a construção do conceito de quadriláteros notáveis, utilizando o software de Geometria Dinâmica GeoGebra como recurso didático. O estudo, que compreendeu uma replicação de pesquisa do trabalho de Câmara dos Santos (2001), foi desenvolvido com 30 estudantes de uma turma do sexto ano do ensino fundamental de uma escola da rede pública da cidade de Recife, capital do Estado de Pernambuco, Brasil. Nesse sentido, utilizamos como sustentação teórica a teoria de Van-Hiele (1957) para o desenvolvimento do pensamento geométrico, por apresentar uma articulação adequada com o nosso objeto de estudo, ou seja, com o conceito de quadriláteros notáveis. Considerando o objetivo que se buscou alcançar, analisamos os dados obtidos, isto é, as produções dos alunos, que compreendeu as atividades propostas na sequência didática, os documentos escritos (as fichas de atividades), as gravações realizadas no GeoGebra e os resultados da pré e póstestagem. Além disso, estes testes se efetuaram em dois momentos: no primeiro, antes da aplicação da sequência didática, e no segundo, após o término do trabalho com a sequência. Dessa forma, no que se refere ao desenvolvimento dos níveis de pensamento geométrico, considerando a teoria de Van-Hiele (1957), verificamos um progresso importante nesse processo, pois parte considerável dos estudantes participantes avançou entre os níveis iniciais, por meio da sequência didática (sendo verificado entre 17% do total de alunos). Observamos, também, que alguns alunos não alcançaram a passagem do primeiro para o segundo nível, mas, esses alunos progrediram significativamente dentro do próprio nível, deixando-os bem próximos do nível seguinte (43% dos estudantes). Além disso, nos foi possível identificar alunos trabalhando nos dois níveis ao mesmo tempo (40% dos alunos), tal fato é um indício de que podem existir faixas de transição entre os níveis vanhielianos, como foi verificado por Câmara dos Santos (2001). Nessa pesquisa, o GeoGebra mostrouse um importante recurso didático aos processos de ensino e de aprendizagem da Geometria, sobretudo, para o desenvolvimento dos níveis de pensamento geométrico no 6º ano do ensino fundamental, tendo a teoria vanhieliana como sustentação.
id UFPE_34dc0a54745038c3c231036d0886b2ce
oai_identifier_str oai:repositorio.ufpe.br:123456789/17129
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling COSTA, André Pereira daSANTOS, Marcelo Câmara dos2016-06-20T17:52:33Z2016-06-20T17:52:33Z2016-02-15https://repositorio.ufpe.br/handle/123456789/17129ark:/64986/001300000kfjtA presente dissertação teve por objetivo analisar os efeitos de uma sequência didática para a construção do conceito de quadriláteros notáveis, utilizando o software de Geometria Dinâmica GeoGebra como recurso didático. O estudo, que compreendeu uma replicação de pesquisa do trabalho de Câmara dos Santos (2001), foi desenvolvido com 30 estudantes de uma turma do sexto ano do ensino fundamental de uma escola da rede pública da cidade de Recife, capital do Estado de Pernambuco, Brasil. Nesse sentido, utilizamos como sustentação teórica a teoria de Van-Hiele (1957) para o desenvolvimento do pensamento geométrico, por apresentar uma articulação adequada com o nosso objeto de estudo, ou seja, com o conceito de quadriláteros notáveis. Considerando o objetivo que se buscou alcançar, analisamos os dados obtidos, isto é, as produções dos alunos, que compreendeu as atividades propostas na sequência didática, os documentos escritos (as fichas de atividades), as gravações realizadas no GeoGebra e os resultados da pré e póstestagem. Além disso, estes testes se efetuaram em dois momentos: no primeiro, antes da aplicação da sequência didática, e no segundo, após o término do trabalho com a sequência. Dessa forma, no que se refere ao desenvolvimento dos níveis de pensamento geométrico, considerando a teoria de Van-Hiele (1957), verificamos um progresso importante nesse processo, pois parte considerável dos estudantes participantes avançou entre os níveis iniciais, por meio da sequência didática (sendo verificado entre 17% do total de alunos). Observamos, também, que alguns alunos não alcançaram a passagem do primeiro para o segundo nível, mas, esses alunos progrediram significativamente dentro do próprio nível, deixando-os bem próximos do nível seguinte (43% dos estudantes). Além disso, nos foi possível identificar alunos trabalhando nos dois níveis ao mesmo tempo (40% dos alunos), tal fato é um indício de que podem existir faixas de transição entre os níveis vanhielianos, como foi verificado por Câmara dos Santos (2001). Nessa pesquisa, o GeoGebra mostrouse um importante recurso didático aos processos de ensino e de aprendizagem da Geometria, sobretudo, para o desenvolvimento dos níveis de pensamento geométrico no 6º ano do ensino fundamental, tendo a teoria vanhieliana como sustentação.CapesThis present dissertation aimed to investigate the effects of a didactic sequence for notable quadrilaterals concept construction, using the GeoGebra Dynamic Geometry software as a didactical resource. The study, that is a replication of Câmara dos Santos (2001) research and it was developed in a class with 30 students of sixth grade class of elementary public school in Recife city, capital of Pernambuco State, Brazil. In this sense, we used as theoretical support the Van-Hiele (1957) theory for the development of geometric thinking by presenting appropriate links with our object of study, this is, with the concept of notable quadrilaterals. By considering the objective that we sought to achieve, we analyzed the obtained data, that is, the productions of the students, which included the activities proposed in the didactic sequence, written documents (worksheets), GeoGebra recordings and the results of pre and post-testing. Besides, these tests were performed in two stages: first, before didactic sequence application of, and, secondly, after the final work with the sequence. In this way, which regard to the development of levels of geometric thinking, considering Van-Hiele (1957) theory, we verified an important progress in this process, because a considerable part of the participating students had advanced among initial levels, through didactic sequence (being checked around 17% of the total of students). We also observed some students did not reach the passage from first to second level, but, these students had a significantly progress inside their own level, what made them being close to the next level (43% of students). Futhermore, was possible to identify students working on two levels at the same time (40% of students), this fact indicates that may exist transition zones between vanhielians’ levels, as Câmara dos Santos (2001) verified. In this research, GeoGebra was an important didactical resource for geometry teaching and learning process, mostly, for the development of levels of geometric thinking in the 6th grade of elementary school, having the Van-Hiele theory as support.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Educacao Matematica e TecnologicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessGeoGebraVan-Hiele.Quadriláteros notáveisEnsino Fundamental.GeoGebraVan-Hiele.Notable quadrilateralsElementary SchoolA construção do conceito de quadriláteros notáveis no 6º ano do ensino fundamental: um estudo sob a luz da teoria vanhielianainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDissertação_AndréPereira.pdf.jpgDissertação_AndréPereira.pdf.jpgGenerated Thumbnailimage/jpeg1349https://repositorio.ufpe.br/bitstream/123456789/17129/5/Disserta%c3%a7%c3%a3o_Andr%c3%a9Pereira.pdf.jpg36d7a9d01053102ea65806f080dafc26MD55ORIGINALDissertação_AndréPereira.pdfDissertação_AndréPereira.pdfapplication/pdf4946213https://repositorio.ufpe.br/bitstream/123456789/17129/1/Disserta%c3%a7%c3%a3o_Andr%c3%a9Pereira.pdf7c107c2e3c7fc4a9983f95790958afb9MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/17129/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/17129/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTDissertação_AndréPereira.pdf.txtDissertação_AndréPereira.pdf.txtExtracted texttext/plain394024https://repositorio.ufpe.br/bitstream/123456789/17129/4/Disserta%c3%a7%c3%a3o_Andr%c3%a9Pereira.pdf.txt9d2f1c28968f5fbdcb01bd81d2180bbaMD54123456789/171292020-09-08 13:10:06.167oai:repositorio.ufpe.br:123456789/17129TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212020-09-08T16:10:06Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv A construção do conceito de quadriláteros notáveis no 6º ano do ensino fundamental: um estudo sob a luz da teoria vanhieliana
title A construção do conceito de quadriláteros notáveis no 6º ano do ensino fundamental: um estudo sob a luz da teoria vanhieliana
spellingShingle A construção do conceito de quadriláteros notáveis no 6º ano do ensino fundamental: um estudo sob a luz da teoria vanhieliana
COSTA, André Pereira da
GeoGebra
Van-Hiele.
Quadriláteros notáveis
Ensino Fundamental.
GeoGebra
Van-Hiele.
Notable quadrilaterals
Elementary School
title_short A construção do conceito de quadriláteros notáveis no 6º ano do ensino fundamental: um estudo sob a luz da teoria vanhieliana
title_full A construção do conceito de quadriláteros notáveis no 6º ano do ensino fundamental: um estudo sob a luz da teoria vanhieliana
title_fullStr A construção do conceito de quadriláteros notáveis no 6º ano do ensino fundamental: um estudo sob a luz da teoria vanhieliana
title_full_unstemmed A construção do conceito de quadriláteros notáveis no 6º ano do ensino fundamental: um estudo sob a luz da teoria vanhieliana
title_sort A construção do conceito de quadriláteros notáveis no 6º ano do ensino fundamental: um estudo sob a luz da teoria vanhieliana
author COSTA, André Pereira da
author_facet COSTA, André Pereira da
author_role author
dc.contributor.author.fl_str_mv COSTA, André Pereira da
dc.contributor.advisor1.fl_str_mv SANTOS, Marcelo Câmara dos
contributor_str_mv SANTOS, Marcelo Câmara dos
dc.subject.por.fl_str_mv GeoGebra
Van-Hiele.
Quadriláteros notáveis
Ensino Fundamental.
GeoGebra
Van-Hiele.
Notable quadrilaterals
Elementary School
topic GeoGebra
Van-Hiele.
Quadriláteros notáveis
Ensino Fundamental.
GeoGebra
Van-Hiele.
Notable quadrilaterals
Elementary School
description A presente dissertação teve por objetivo analisar os efeitos de uma sequência didática para a construção do conceito de quadriláteros notáveis, utilizando o software de Geometria Dinâmica GeoGebra como recurso didático. O estudo, que compreendeu uma replicação de pesquisa do trabalho de Câmara dos Santos (2001), foi desenvolvido com 30 estudantes de uma turma do sexto ano do ensino fundamental de uma escola da rede pública da cidade de Recife, capital do Estado de Pernambuco, Brasil. Nesse sentido, utilizamos como sustentação teórica a teoria de Van-Hiele (1957) para o desenvolvimento do pensamento geométrico, por apresentar uma articulação adequada com o nosso objeto de estudo, ou seja, com o conceito de quadriláteros notáveis. Considerando o objetivo que se buscou alcançar, analisamos os dados obtidos, isto é, as produções dos alunos, que compreendeu as atividades propostas na sequência didática, os documentos escritos (as fichas de atividades), as gravações realizadas no GeoGebra e os resultados da pré e póstestagem. Além disso, estes testes se efetuaram em dois momentos: no primeiro, antes da aplicação da sequência didática, e no segundo, após o término do trabalho com a sequência. Dessa forma, no que se refere ao desenvolvimento dos níveis de pensamento geométrico, considerando a teoria de Van-Hiele (1957), verificamos um progresso importante nesse processo, pois parte considerável dos estudantes participantes avançou entre os níveis iniciais, por meio da sequência didática (sendo verificado entre 17% do total de alunos). Observamos, também, que alguns alunos não alcançaram a passagem do primeiro para o segundo nível, mas, esses alunos progrediram significativamente dentro do próprio nível, deixando-os bem próximos do nível seguinte (43% dos estudantes). Além disso, nos foi possível identificar alunos trabalhando nos dois níveis ao mesmo tempo (40% dos alunos), tal fato é um indício de que podem existir faixas de transição entre os níveis vanhielianos, como foi verificado por Câmara dos Santos (2001). Nessa pesquisa, o GeoGebra mostrouse um importante recurso didático aos processos de ensino e de aprendizagem da Geometria, sobretudo, para o desenvolvimento dos níveis de pensamento geométrico no 6º ano do ensino fundamental, tendo a teoria vanhieliana como sustentação.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-06-20T17:52:33Z
dc.date.available.fl_str_mv 2016-06-20T17:52:33Z
dc.date.issued.fl_str_mv 2016-02-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/17129
dc.identifier.dark.fl_str_mv ark:/64986/001300000kfjt
url https://repositorio.ufpe.br/handle/123456789/17129
identifier_str_mv ark:/64986/001300000kfjt
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Educacao Matematica e Tecnologica
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/17129/5/Disserta%c3%a7%c3%a3o_Andr%c3%a9Pereira.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/17129/1/Disserta%c3%a7%c3%a3o_Andr%c3%a9Pereira.pdf
https://repositorio.ufpe.br/bitstream/123456789/17129/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/17129/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/17129/4/Disserta%c3%a7%c3%a3o_Andr%c3%a9Pereira.pdf.txt
bitstream.checksum.fl_str_mv 36d7a9d01053102ea65806f080dafc26
7c107c2e3c7fc4a9983f95790958afb9
66e71c371cc565284e70f40736c94386
4b8a02c7f2818eaf00dcf2260dd5eb08
9d2f1c28968f5fbdcb01bd81d2180bba
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172847103901696