A construção do conceito de quadriláteros notáveis no 6º ano do ensino fundamental: um estudo sob a luz da teoria vanhieliana
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000kfjt |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/17129 |
Resumo: | A presente dissertação teve por objetivo analisar os efeitos de uma sequência didática para a construção do conceito de quadriláteros notáveis, utilizando o software de Geometria Dinâmica GeoGebra como recurso didático. O estudo, que compreendeu uma replicação de pesquisa do trabalho de Câmara dos Santos (2001), foi desenvolvido com 30 estudantes de uma turma do sexto ano do ensino fundamental de uma escola da rede pública da cidade de Recife, capital do Estado de Pernambuco, Brasil. Nesse sentido, utilizamos como sustentação teórica a teoria de Van-Hiele (1957) para o desenvolvimento do pensamento geométrico, por apresentar uma articulação adequada com o nosso objeto de estudo, ou seja, com o conceito de quadriláteros notáveis. Considerando o objetivo que se buscou alcançar, analisamos os dados obtidos, isto é, as produções dos alunos, que compreendeu as atividades propostas na sequência didática, os documentos escritos (as fichas de atividades), as gravações realizadas no GeoGebra e os resultados da pré e póstestagem. Além disso, estes testes se efetuaram em dois momentos: no primeiro, antes da aplicação da sequência didática, e no segundo, após o término do trabalho com a sequência. Dessa forma, no que se refere ao desenvolvimento dos níveis de pensamento geométrico, considerando a teoria de Van-Hiele (1957), verificamos um progresso importante nesse processo, pois parte considerável dos estudantes participantes avançou entre os níveis iniciais, por meio da sequência didática (sendo verificado entre 17% do total de alunos). Observamos, também, que alguns alunos não alcançaram a passagem do primeiro para o segundo nível, mas, esses alunos progrediram significativamente dentro do próprio nível, deixando-os bem próximos do nível seguinte (43% dos estudantes). Além disso, nos foi possível identificar alunos trabalhando nos dois níveis ao mesmo tempo (40% dos alunos), tal fato é um indício de que podem existir faixas de transição entre os níveis vanhielianos, como foi verificado por Câmara dos Santos (2001). Nessa pesquisa, o GeoGebra mostrouse um importante recurso didático aos processos de ensino e de aprendizagem da Geometria, sobretudo, para o desenvolvimento dos níveis de pensamento geométrico no 6º ano do ensino fundamental, tendo a teoria vanhieliana como sustentação. |
id |
UFPE_34dc0a54745038c3c231036d0886b2ce |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/17129 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
COSTA, André Pereira daSANTOS, Marcelo Câmara dos2016-06-20T17:52:33Z2016-06-20T17:52:33Z2016-02-15https://repositorio.ufpe.br/handle/123456789/17129ark:/64986/001300000kfjtA presente dissertação teve por objetivo analisar os efeitos de uma sequência didática para a construção do conceito de quadriláteros notáveis, utilizando o software de Geometria Dinâmica GeoGebra como recurso didático. O estudo, que compreendeu uma replicação de pesquisa do trabalho de Câmara dos Santos (2001), foi desenvolvido com 30 estudantes de uma turma do sexto ano do ensino fundamental de uma escola da rede pública da cidade de Recife, capital do Estado de Pernambuco, Brasil. Nesse sentido, utilizamos como sustentação teórica a teoria de Van-Hiele (1957) para o desenvolvimento do pensamento geométrico, por apresentar uma articulação adequada com o nosso objeto de estudo, ou seja, com o conceito de quadriláteros notáveis. Considerando o objetivo que se buscou alcançar, analisamos os dados obtidos, isto é, as produções dos alunos, que compreendeu as atividades propostas na sequência didática, os documentos escritos (as fichas de atividades), as gravações realizadas no GeoGebra e os resultados da pré e póstestagem. Além disso, estes testes se efetuaram em dois momentos: no primeiro, antes da aplicação da sequência didática, e no segundo, após o término do trabalho com a sequência. Dessa forma, no que se refere ao desenvolvimento dos níveis de pensamento geométrico, considerando a teoria de Van-Hiele (1957), verificamos um progresso importante nesse processo, pois parte considerável dos estudantes participantes avançou entre os níveis iniciais, por meio da sequência didática (sendo verificado entre 17% do total de alunos). Observamos, também, que alguns alunos não alcançaram a passagem do primeiro para o segundo nível, mas, esses alunos progrediram significativamente dentro do próprio nível, deixando-os bem próximos do nível seguinte (43% dos estudantes). Além disso, nos foi possível identificar alunos trabalhando nos dois níveis ao mesmo tempo (40% dos alunos), tal fato é um indício de que podem existir faixas de transição entre os níveis vanhielianos, como foi verificado por Câmara dos Santos (2001). Nessa pesquisa, o GeoGebra mostrouse um importante recurso didático aos processos de ensino e de aprendizagem da Geometria, sobretudo, para o desenvolvimento dos níveis de pensamento geométrico no 6º ano do ensino fundamental, tendo a teoria vanhieliana como sustentação.CapesThis present dissertation aimed to investigate the effects of a didactic sequence for notable quadrilaterals concept construction, using the GeoGebra Dynamic Geometry software as a didactical resource. The study, that is a replication of Câmara dos Santos (2001) research and it was developed in a class with 30 students of sixth grade class of elementary public school in Recife city, capital of Pernambuco State, Brazil. In this sense, we used as theoretical support the Van-Hiele (1957) theory for the development of geometric thinking by presenting appropriate links with our object of study, this is, with the concept of notable quadrilaterals. By considering the objective that we sought to achieve, we analyzed the obtained data, that is, the productions of the students, which included the activities proposed in the didactic sequence, written documents (worksheets), GeoGebra recordings and the results of pre and post-testing. Besides, these tests were performed in two stages: first, before didactic sequence application of, and, secondly, after the final work with the sequence. In this way, which regard to the development of levels of geometric thinking, considering Van-Hiele (1957) theory, we verified an important progress in this process, because a considerable part of the participating students had advanced among initial levels, through didactic sequence (being checked around 17% of the total of students). We also observed some students did not reach the passage from first to second level, but, these students had a significantly progress inside their own level, what made them being close to the next level (43% of students). Futhermore, was possible to identify students working on two levels at the same time (40% of students), this fact indicates that may exist transition zones between vanhielians’ levels, as Câmara dos Santos (2001) verified. In this research, GeoGebra was an important didactical resource for geometry teaching and learning process, mostly, for the development of levels of geometric thinking in the 6th grade of elementary school, having the Van-Hiele theory as support.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Educacao Matematica e TecnologicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessGeoGebraVan-Hiele.Quadriláteros notáveisEnsino Fundamental.GeoGebraVan-Hiele.Notable quadrilateralsElementary SchoolA construção do conceito de quadriláteros notáveis no 6º ano do ensino fundamental: um estudo sob a luz da teoria vanhielianainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDissertação_AndréPereira.pdf.jpgDissertação_AndréPereira.pdf.jpgGenerated Thumbnailimage/jpeg1349https://repositorio.ufpe.br/bitstream/123456789/17129/5/Disserta%c3%a7%c3%a3o_Andr%c3%a9Pereira.pdf.jpg36d7a9d01053102ea65806f080dafc26MD55ORIGINALDissertação_AndréPereira.pdfDissertação_AndréPereira.pdfapplication/pdf4946213https://repositorio.ufpe.br/bitstream/123456789/17129/1/Disserta%c3%a7%c3%a3o_Andr%c3%a9Pereira.pdf7c107c2e3c7fc4a9983f95790958afb9MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/17129/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/17129/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTDissertação_AndréPereira.pdf.txtDissertação_AndréPereira.pdf.txtExtracted texttext/plain394024https://repositorio.ufpe.br/bitstream/123456789/17129/4/Disserta%c3%a7%c3%a3o_Andr%c3%a9Pereira.pdf.txt9d2f1c28968f5fbdcb01bd81d2180bbaMD54123456789/171292020-09-08 13:10:06.167oai:repositorio.ufpe.br:123456789/17129TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212020-09-08T16:10:06Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
A construção do conceito de quadriláteros notáveis no 6º ano do ensino fundamental: um estudo sob a luz da teoria vanhieliana |
title |
A construção do conceito de quadriláteros notáveis no 6º ano do ensino fundamental: um estudo sob a luz da teoria vanhieliana |
spellingShingle |
A construção do conceito de quadriláteros notáveis no 6º ano do ensino fundamental: um estudo sob a luz da teoria vanhieliana COSTA, André Pereira da GeoGebra Van-Hiele. Quadriláteros notáveis Ensino Fundamental. GeoGebra Van-Hiele. Notable quadrilaterals Elementary School |
title_short |
A construção do conceito de quadriláteros notáveis no 6º ano do ensino fundamental: um estudo sob a luz da teoria vanhieliana |
title_full |
A construção do conceito de quadriláteros notáveis no 6º ano do ensino fundamental: um estudo sob a luz da teoria vanhieliana |
title_fullStr |
A construção do conceito de quadriláteros notáveis no 6º ano do ensino fundamental: um estudo sob a luz da teoria vanhieliana |
title_full_unstemmed |
A construção do conceito de quadriláteros notáveis no 6º ano do ensino fundamental: um estudo sob a luz da teoria vanhieliana |
title_sort |
A construção do conceito de quadriláteros notáveis no 6º ano do ensino fundamental: um estudo sob a luz da teoria vanhieliana |
author |
COSTA, André Pereira da |
author_facet |
COSTA, André Pereira da |
author_role |
author |
dc.contributor.author.fl_str_mv |
COSTA, André Pereira da |
dc.contributor.advisor1.fl_str_mv |
SANTOS, Marcelo Câmara dos |
contributor_str_mv |
SANTOS, Marcelo Câmara dos |
dc.subject.por.fl_str_mv |
GeoGebra Van-Hiele. Quadriláteros notáveis Ensino Fundamental. GeoGebra Van-Hiele. Notable quadrilaterals Elementary School |
topic |
GeoGebra Van-Hiele. Quadriláteros notáveis Ensino Fundamental. GeoGebra Van-Hiele. Notable quadrilaterals Elementary School |
description |
A presente dissertação teve por objetivo analisar os efeitos de uma sequência didática para a construção do conceito de quadriláteros notáveis, utilizando o software de Geometria Dinâmica GeoGebra como recurso didático. O estudo, que compreendeu uma replicação de pesquisa do trabalho de Câmara dos Santos (2001), foi desenvolvido com 30 estudantes de uma turma do sexto ano do ensino fundamental de uma escola da rede pública da cidade de Recife, capital do Estado de Pernambuco, Brasil. Nesse sentido, utilizamos como sustentação teórica a teoria de Van-Hiele (1957) para o desenvolvimento do pensamento geométrico, por apresentar uma articulação adequada com o nosso objeto de estudo, ou seja, com o conceito de quadriláteros notáveis. Considerando o objetivo que se buscou alcançar, analisamos os dados obtidos, isto é, as produções dos alunos, que compreendeu as atividades propostas na sequência didática, os documentos escritos (as fichas de atividades), as gravações realizadas no GeoGebra e os resultados da pré e póstestagem. Além disso, estes testes se efetuaram em dois momentos: no primeiro, antes da aplicação da sequência didática, e no segundo, após o término do trabalho com a sequência. Dessa forma, no que se refere ao desenvolvimento dos níveis de pensamento geométrico, considerando a teoria de Van-Hiele (1957), verificamos um progresso importante nesse processo, pois parte considerável dos estudantes participantes avançou entre os níveis iniciais, por meio da sequência didática (sendo verificado entre 17% do total de alunos). Observamos, também, que alguns alunos não alcançaram a passagem do primeiro para o segundo nível, mas, esses alunos progrediram significativamente dentro do próprio nível, deixando-os bem próximos do nível seguinte (43% dos estudantes). Além disso, nos foi possível identificar alunos trabalhando nos dois níveis ao mesmo tempo (40% dos alunos), tal fato é um indício de que podem existir faixas de transição entre os níveis vanhielianos, como foi verificado por Câmara dos Santos (2001). Nessa pesquisa, o GeoGebra mostrouse um importante recurso didático aos processos de ensino e de aprendizagem da Geometria, sobretudo, para o desenvolvimento dos níveis de pensamento geométrico no 6º ano do ensino fundamental, tendo a teoria vanhieliana como sustentação. |
publishDate |
2016 |
dc.date.accessioned.fl_str_mv |
2016-06-20T17:52:33Z |
dc.date.available.fl_str_mv |
2016-06-20T17:52:33Z |
dc.date.issued.fl_str_mv |
2016-02-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/17129 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000kfjt |
url |
https://repositorio.ufpe.br/handle/123456789/17129 |
identifier_str_mv |
ark:/64986/001300000kfjt |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Educacao Matematica e Tecnologica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/17129/5/Disserta%c3%a7%c3%a3o_Andr%c3%a9Pereira.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/17129/1/Disserta%c3%a7%c3%a3o_Andr%c3%a9Pereira.pdf https://repositorio.ufpe.br/bitstream/123456789/17129/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/17129/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/17129/4/Disserta%c3%a7%c3%a3o_Andr%c3%a9Pereira.pdf.txt |
bitstream.checksum.fl_str_mv |
36d7a9d01053102ea65806f080dafc26 7c107c2e3c7fc4a9983f95790958afb9 66e71c371cc565284e70f40736c94386 4b8a02c7f2818eaf00dcf2260dd5eb08 9d2f1c28968f5fbdcb01bd81d2180bba |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172847103901696 |