Detecção de pedestres com oclusão

Detalhes bibliográficos
Autor(a) principal: SANTOS, Silvio Gustavo de Oliveira
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000012psh
Texto Completo: https://repositorio.ufpe.br/handle/123456789/12437
Resumo: A detecção de pedestres é uma área muito promissora no ramo da visão computacional, pois possibilita aplicações importantes em sistemas de auxílio à direção de veículos, sistemas de vigilância e na área da robótica. Muitas técnicas novas surgiram com grandes melhorias nas taxas de detecção, mas ainda assim, seus desempenhos caem consideravelmente quando os pedestres estão sofrendo oclusão. Este trabalho analisa como características baseadas no HOG são construídas e como elas são afetadas quando os pedestres estão parcialmente ocluídos. Como o HOG é aplicado em muitos sistemas de detecção de pedestres, entender como a oclusão afeta a sua performance é importante para prever como extratores de características derivados dele se comportarão na mesma situação. Mais especificamente, o HOG, HOG-LBP e duas novas combinações de características, HOG-LTP e HOG-LMEBP foram analisados. Para tal, oclusões foram geradas sinteticamente mesclando tamanhos diferentes de imagens de não pedestres, em diferentes direções, com a base de dados INRIA. O resultado foi uma nova base de dados composta por oclusões nas direções ascendente, descendente e lateral (da esquerda para direita). Os quatro extratores de características foram usados para treinar classificadores SVM na base de dados INRIA e foram testados com a nova base de dados com oclusão. Os resultados confirmam que o desempenho dos classificadores decai estritamente à medida que a oclusão aumenta, porém o impacto depende de que área do pedestre está escondida. Nós também mostramos que é possível melhorar as taxas de detecção em condições de oclusão simplesmente combinando classificadores.
id UFPE_44cbf4b9b57b64e3311103ccb95957a5
oai_identifier_str oai:repositorio.ufpe.br:123456789/12437
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling SANTOS, Silvio Gustavo de OliveiraCAVALCANTI, George Darmiton da CunhaREN, Tsang Ing2015-03-13T13:23:50Z2015-03-13T13:23:50Z2013-08-19SANTOS, Silvio Gustavo de Oliveira. Detecção de pedestres com oclusão. Recife, 2013. 50 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2013..https://repositorio.ufpe.br/handle/123456789/12437ark:/64986/0013000012pshA detecção de pedestres é uma área muito promissora no ramo da visão computacional, pois possibilita aplicações importantes em sistemas de auxílio à direção de veículos, sistemas de vigilância e na área da robótica. Muitas técnicas novas surgiram com grandes melhorias nas taxas de detecção, mas ainda assim, seus desempenhos caem consideravelmente quando os pedestres estão sofrendo oclusão. Este trabalho analisa como características baseadas no HOG são construídas e como elas são afetadas quando os pedestres estão parcialmente ocluídos. Como o HOG é aplicado em muitos sistemas de detecção de pedestres, entender como a oclusão afeta a sua performance é importante para prever como extratores de características derivados dele se comportarão na mesma situação. Mais especificamente, o HOG, HOG-LBP e duas novas combinações de características, HOG-LTP e HOG-LMEBP foram analisados. Para tal, oclusões foram geradas sinteticamente mesclando tamanhos diferentes de imagens de não pedestres, em diferentes direções, com a base de dados INRIA. O resultado foi uma nova base de dados composta por oclusões nas direções ascendente, descendente e lateral (da esquerda para direita). Os quatro extratores de características foram usados para treinar classificadores SVM na base de dados INRIA e foram testados com a nova base de dados com oclusão. Os resultados confirmam que o desempenho dos classificadores decai estritamente à medida que a oclusão aumenta, porém o impacto depende de que área do pedestre está escondida. Nós também mostramos que é possível melhorar as taxas de detecção em condições de oclusão simplesmente combinando classificadores.porUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessPedestreDetecçãoOclusãoCombinaçãoVisão computacional.Detecção de pedestres com oclusãoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDissertação Silvio Gustavo Santos.pdf.jpgDissertação Silvio Gustavo Santos.pdf.jpgGenerated Thumbnailimage/jpeg1233https://repositorio.ufpe.br/bitstream/123456789/12437/5/Disserta%c3%a7%c3%a3o%20Silvio%20Gustavo%20Santos.pdf.jpgf4d98fb118ee63dbd73226638a684645MD55ORIGINALDissertação Silvio Gustavo Santos.pdfDissertação Silvio Gustavo Santos.pdfapplication/pdf9199452https://repositorio.ufpe.br/bitstream/123456789/12437/1/Disserta%c3%a7%c3%a3o%20Silvio%20Gustavo%20Santos.pdfb5419072e1f355a27b215065026b7823MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/12437/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/12437/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTDissertação Silvio Gustavo Santos.pdf.txtDissertação Silvio Gustavo Santos.pdf.txtExtracted texttext/plain82849https://repositorio.ufpe.br/bitstream/123456789/12437/4/Disserta%c3%a7%c3%a3o%20Silvio%20Gustavo%20Santos.pdf.txtd0048abb7a4382bada3f85aacede7aaaMD54123456789/124372019-10-25 17:27:21.084oai:repositorio.ufpe.br:123456789/12437TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T20:27:21Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Detecção de pedestres com oclusão
title Detecção de pedestres com oclusão
spellingShingle Detecção de pedestres com oclusão
SANTOS, Silvio Gustavo de Oliveira
Pedestre
Detecção
Oclusão
Combinação
Visão computacional.
title_short Detecção de pedestres com oclusão
title_full Detecção de pedestres com oclusão
title_fullStr Detecção de pedestres com oclusão
title_full_unstemmed Detecção de pedestres com oclusão
title_sort Detecção de pedestres com oclusão
author SANTOS, Silvio Gustavo de Oliveira
author_facet SANTOS, Silvio Gustavo de Oliveira
author_role author
dc.contributor.author.fl_str_mv SANTOS, Silvio Gustavo de Oliveira
dc.contributor.advisor1.fl_str_mv CAVALCANTI, George Darmiton da Cunha
REN, Tsang Ing
contributor_str_mv CAVALCANTI, George Darmiton da Cunha
REN, Tsang Ing
dc.subject.por.fl_str_mv Pedestre
Detecção
Oclusão
Combinação
Visão computacional.
topic Pedestre
Detecção
Oclusão
Combinação
Visão computacional.
description A detecção de pedestres é uma área muito promissora no ramo da visão computacional, pois possibilita aplicações importantes em sistemas de auxílio à direção de veículos, sistemas de vigilância e na área da robótica. Muitas técnicas novas surgiram com grandes melhorias nas taxas de detecção, mas ainda assim, seus desempenhos caem consideravelmente quando os pedestres estão sofrendo oclusão. Este trabalho analisa como características baseadas no HOG são construídas e como elas são afetadas quando os pedestres estão parcialmente ocluídos. Como o HOG é aplicado em muitos sistemas de detecção de pedestres, entender como a oclusão afeta a sua performance é importante para prever como extratores de características derivados dele se comportarão na mesma situação. Mais especificamente, o HOG, HOG-LBP e duas novas combinações de características, HOG-LTP e HOG-LMEBP foram analisados. Para tal, oclusões foram geradas sinteticamente mesclando tamanhos diferentes de imagens de não pedestres, em diferentes direções, com a base de dados INRIA. O resultado foi uma nova base de dados composta por oclusões nas direções ascendente, descendente e lateral (da esquerda para direita). Os quatro extratores de características foram usados para treinar classificadores SVM na base de dados INRIA e foram testados com a nova base de dados com oclusão. Os resultados confirmam que o desempenho dos classificadores decai estritamente à medida que a oclusão aumenta, porém o impacto depende de que área do pedestre está escondida. Nós também mostramos que é possível melhorar as taxas de detecção em condições de oclusão simplesmente combinando classificadores.
publishDate 2013
dc.date.issued.fl_str_mv 2013-08-19
dc.date.accessioned.fl_str_mv 2015-03-13T13:23:50Z
dc.date.available.fl_str_mv 2015-03-13T13:23:50Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SANTOS, Silvio Gustavo de Oliveira. Detecção de pedestres com oclusão. Recife, 2013. 50 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2013..
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/12437
dc.identifier.dark.fl_str_mv ark:/64986/0013000012psh
identifier_str_mv SANTOS, Silvio Gustavo de Oliveira. Detecção de pedestres com oclusão. Recife, 2013. 50 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2013..
ark:/64986/0013000012psh
url https://repositorio.ufpe.br/handle/123456789/12437
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/12437/5/Disserta%c3%a7%c3%a3o%20Silvio%20Gustavo%20Santos.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/12437/1/Disserta%c3%a7%c3%a3o%20Silvio%20Gustavo%20Santos.pdf
https://repositorio.ufpe.br/bitstream/123456789/12437/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/12437/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/12437/4/Disserta%c3%a7%c3%a3o%20Silvio%20Gustavo%20Santos.pdf.txt
bitstream.checksum.fl_str_mv f4d98fb118ee63dbd73226638a684645
b5419072e1f355a27b215065026b7823
66e71c371cc565284e70f40736c94386
4b8a02c7f2818eaf00dcf2260dd5eb08
d0048abb7a4382bada3f85aacede7aaa
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172983595991040