Testing inference in heteroskedastic linear regressions: a comparison of two alternative approaches
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000q5kz |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/30408 |
Resumo: | We consider the issue of performing testing inferences on the parameters that index the linear regression model under heteroskedasticity of unknown form. Quasi-t test statistics use asymptotically correct standard errors obtained from heteroskedasticity-consistent covariance matrix estimators. An alternative approach involves making an assumption about the functional form of the response variances and jointly modeling mean and dispersion effects. In this dissertation we compare the accuracy of testing inferences made using the two approaches. We consider several different quasi-t tests and also z tests performed after generalized least squares estimation which was carried out using three different estimation strategies. Our numerical evaluations were performed using different models, different sample sizes, and different heteroskedasticity strengths. The numerical evidence shows that some quasi-t tests are considerably less size distorted in small samples than the tests carried out after the jointly modeling mean and dispersion effects. Finally, we present and discuss two empirical applications. |
id |
UFPE_501d6a873d74cbfbe80e5a8060df061f |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/30408 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
PEREIRA, Inara Francoyse de Souzahttp://lattes.cnpq.br/5851876967608389http://lattes.cnpq.br/2225977664095899CRIBARI NETO, Francisco2019-04-29T22:23:34Z2019-04-29T22:23:34Z2018-02-20https://repositorio.ufpe.br/handle/123456789/30408ark:/64986/001300000q5kzWe consider the issue of performing testing inferences on the parameters that index the linear regression model under heteroskedasticity of unknown form. Quasi-t test statistics use asymptotically correct standard errors obtained from heteroskedasticity-consistent covariance matrix estimators. An alternative approach involves making an assumption about the functional form of the response variances and jointly modeling mean and dispersion effects. In this dissertation we compare the accuracy of testing inferences made using the two approaches. We consider several different quasi-t tests and also z tests performed after generalized least squares estimation which was carried out using three different estimation strategies. Our numerical evaluations were performed using different models, different sample sizes, and different heteroskedasticity strengths. The numerical evidence shows that some quasi-t tests are considerably less size distorted in small samples than the tests carried out after the jointly modeling mean and dispersion effects. Finally, we present and discuss two empirical applications.CAPESNa presente dissertação nós consideramos a realização de inferências por teste de hipótese sobre os parâmetros que indexam o modelo linear de regressão sob heteroscedasticidade de forma desconhecida. As estatísticas de teste quasi-t empregam erros-padrão assintoticamente corretos oriundos de estimadores consistentes da matriz de covariância do estimador de mínimos quadrados ordinários dos parâmetros de regressão. Um enfoque alternativo envolve a modelagem das variâncias das respostas, ou seja, a modelagem conjunta de efeitos médios e de dispersão. Nós comparamos os dois enfoques através de várias simulações de Monte Carlo. Consideramos vários testes quasi-t e testes z realizados após estimação por mínimos quadrados generalizados realizada através de três enfoques distintos. Nossas avaliações numéricas foram realizadas utilizando diferentes modelos, tamanhos de amostra e graus de heteroscedasticidade. A evidência numérica indica que os testes quasi-t tendem a apresentar distorções de tamanho consideravelmente menores em pequenas amostras do que os testes realizados após a modelagem conjunta dos efeitos médios e de dispersão. Por fim, apresentamos e discutimos duas aplicações empíricas.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em EstatisticaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessEstatísticaRegressão linearTesting inference in heteroskedastic linear regressions: a comparison of two alternative approachesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDISSERTAÇÃO Inara Francoyse de Souza Pereira.pdf.jpgDISSERTAÇÃO Inara Francoyse de Souza Pereira.pdf.jpgGenerated Thumbnailimage/jpeg1271https://repositorio.ufpe.br/bitstream/123456789/30408/5/DISSERTA%c3%87%c3%83O%20Inara%20Francoyse%20de%20Souza%20Pereira.pdf.jpgd557e67230441a114d7cded57285af44MD55ORIGINALDISSERTAÇÃO Inara Francoyse de Souza Pereira.pdfDISSERTAÇÃO Inara Francoyse de Souza Pereira.pdfapplication/pdf655957https://repositorio.ufpe.br/bitstream/123456789/30408/1/DISSERTA%c3%87%c3%83O%20Inara%20Francoyse%20de%20Souza%20Pereira.pdf9abfc6de79b9b58d1e273938caafd488MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/30408/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/30408/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTDISSERTAÇÃO Inara Francoyse de Souza Pereira.pdf.txtDISSERTAÇÃO Inara Francoyse de Souza Pereira.pdf.txtExtracted texttext/plain115149https://repositorio.ufpe.br/bitstream/123456789/30408/4/DISSERTA%c3%87%c3%83O%20Inara%20Francoyse%20de%20Souza%20Pereira.pdf.txtc8e94b237f71fa059ee804f5d0eba890MD54123456789/304082019-10-26 02:43:40.436oai:repositorio.ufpe.br:123456789/30408TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-26T05:43:40Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Testing inference in heteroskedastic linear regressions: a comparison of two alternative approaches |
title |
Testing inference in heteroskedastic linear regressions: a comparison of two alternative approaches |
spellingShingle |
Testing inference in heteroskedastic linear regressions: a comparison of two alternative approaches PEREIRA, Inara Francoyse de Souza Estatística Regressão linear |
title_short |
Testing inference in heteroskedastic linear regressions: a comparison of two alternative approaches |
title_full |
Testing inference in heteroskedastic linear regressions: a comparison of two alternative approaches |
title_fullStr |
Testing inference in heteroskedastic linear regressions: a comparison of two alternative approaches |
title_full_unstemmed |
Testing inference in heteroskedastic linear regressions: a comparison of two alternative approaches |
title_sort |
Testing inference in heteroskedastic linear regressions: a comparison of two alternative approaches |
author |
PEREIRA, Inara Francoyse de Souza |
author_facet |
PEREIRA, Inara Francoyse de Souza |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/5851876967608389 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/2225977664095899 |
dc.contributor.author.fl_str_mv |
PEREIRA, Inara Francoyse de Souza |
dc.contributor.advisor1.fl_str_mv |
CRIBARI NETO, Francisco |
contributor_str_mv |
CRIBARI NETO, Francisco |
dc.subject.por.fl_str_mv |
Estatística Regressão linear |
topic |
Estatística Regressão linear |
description |
We consider the issue of performing testing inferences on the parameters that index the linear regression model under heteroskedasticity of unknown form. Quasi-t test statistics use asymptotically correct standard errors obtained from heteroskedasticity-consistent covariance matrix estimators. An alternative approach involves making an assumption about the functional form of the response variances and jointly modeling mean and dispersion effects. In this dissertation we compare the accuracy of testing inferences made using the two approaches. We consider several different quasi-t tests and also z tests performed after generalized least squares estimation which was carried out using three different estimation strategies. Our numerical evaluations were performed using different models, different sample sizes, and different heteroskedasticity strengths. The numerical evidence shows that some quasi-t tests are considerably less size distorted in small samples than the tests carried out after the jointly modeling mean and dispersion effects. Finally, we present and discuss two empirical applications. |
publishDate |
2018 |
dc.date.issued.fl_str_mv |
2018-02-20 |
dc.date.accessioned.fl_str_mv |
2019-04-29T22:23:34Z |
dc.date.available.fl_str_mv |
2019-04-29T22:23:34Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/30408 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000q5kz |
url |
https://repositorio.ufpe.br/handle/123456789/30408 |
identifier_str_mv |
ark:/64986/001300000q5kz |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Estatistica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/30408/5/DISSERTA%c3%87%c3%83O%20Inara%20Francoyse%20de%20Souza%20Pereira.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/30408/1/DISSERTA%c3%87%c3%83O%20Inara%20Francoyse%20de%20Souza%20Pereira.pdf https://repositorio.ufpe.br/bitstream/123456789/30408/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/30408/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/30408/4/DISSERTA%c3%87%c3%83O%20Inara%20Francoyse%20de%20Souza%20Pereira.pdf.txt |
bitstream.checksum.fl_str_mv |
d557e67230441a114d7cded57285af44 9abfc6de79b9b58d1e273938caafd488 e39d27027a6cc9cb039ad269a5db8e34 4b8a02c7f2818eaf00dcf2260dd5eb08 c8e94b237f71fa059ee804f5d0eba890 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172883251462144 |