Testing inference in heteroskedastic linear regressions: a comparison of two alternative approaches

Detalhes bibliográficos
Autor(a) principal: PEREIRA, Inara Francoyse de Souza
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000q5kz
Texto Completo: https://repositorio.ufpe.br/handle/123456789/30408
Resumo: We consider the issue of performing testing inferences on the parameters that index the linear regression model under heteroskedasticity of unknown form. Quasi-t test statistics use asymptotically correct standard errors obtained from heteroskedasticity-consistent covariance matrix estimators. An alternative approach involves making an assumption about the functional form of the response variances and jointly modeling mean and dispersion effects. In this dissertation we compare the accuracy of testing inferences made using the two approaches. We consider several different quasi-t tests and also z tests performed after generalized least squares estimation which was carried out using three different estimation strategies. Our numerical evaluations were performed using different models, different sample sizes, and different heteroskedasticity strengths. The numerical evidence shows that some quasi-t tests are considerably less size distorted in small samples than the tests carried out after the jointly modeling mean and dispersion effects. Finally, we present and discuss two empirical applications.
id UFPE_501d6a873d74cbfbe80e5a8060df061f
oai_identifier_str oai:repositorio.ufpe.br:123456789/30408
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling PEREIRA, Inara Francoyse de Souzahttp://lattes.cnpq.br/5851876967608389http://lattes.cnpq.br/2225977664095899CRIBARI NETO, Francisco2019-04-29T22:23:34Z2019-04-29T22:23:34Z2018-02-20https://repositorio.ufpe.br/handle/123456789/30408ark:/64986/001300000q5kzWe consider the issue of performing testing inferences on the parameters that index the linear regression model under heteroskedasticity of unknown form. Quasi-t test statistics use asymptotically correct standard errors obtained from heteroskedasticity-consistent covariance matrix estimators. An alternative approach involves making an assumption about the functional form of the response variances and jointly modeling mean and dispersion effects. In this dissertation we compare the accuracy of testing inferences made using the two approaches. We consider several different quasi-t tests and also z tests performed after generalized least squares estimation which was carried out using three different estimation strategies. Our numerical evaluations were performed using different models, different sample sizes, and different heteroskedasticity strengths. The numerical evidence shows that some quasi-t tests are considerably less size distorted in small samples than the tests carried out after the jointly modeling mean and dispersion effects. Finally, we present and discuss two empirical applications.CAPESNa presente dissertação nós consideramos a realização de inferências por teste de hipótese sobre os parâmetros que indexam o modelo linear de regressão sob heteroscedasticidade de forma desconhecida. As estatísticas de teste quasi-t empregam erros-padrão assintoticamente corretos oriundos de estimadores consistentes da matriz de covariância do estimador de mínimos quadrados ordinários dos parâmetros de regressão. Um enfoque alternativo envolve a modelagem das variâncias das respostas, ou seja, a modelagem conjunta de efeitos médios e de dispersão. Nós comparamos os dois enfoques através de várias simulações de Monte Carlo. Consideramos vários testes quasi-t e testes z realizados após estimação por mínimos quadrados generalizados realizada através de três enfoques distintos. Nossas avaliações numéricas foram realizadas utilizando diferentes modelos, tamanhos de amostra e graus de heteroscedasticidade. A evidência numérica indica que os testes quasi-t tendem a apresentar distorções de tamanho consideravelmente menores em pequenas amostras do que os testes realizados após a modelagem conjunta dos efeitos médios e de dispersão. Por fim, apresentamos e discutimos duas aplicações empíricas.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em EstatisticaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessEstatísticaRegressão linearTesting inference in heteroskedastic linear regressions: a comparison of two alternative approachesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDISSERTAÇÃO Inara Francoyse de Souza Pereira.pdf.jpgDISSERTAÇÃO Inara Francoyse de Souza Pereira.pdf.jpgGenerated Thumbnailimage/jpeg1271https://repositorio.ufpe.br/bitstream/123456789/30408/5/DISSERTA%c3%87%c3%83O%20Inara%20Francoyse%20de%20Souza%20Pereira.pdf.jpgd557e67230441a114d7cded57285af44MD55ORIGINALDISSERTAÇÃO Inara Francoyse de Souza Pereira.pdfDISSERTAÇÃO Inara Francoyse de Souza Pereira.pdfapplication/pdf655957https://repositorio.ufpe.br/bitstream/123456789/30408/1/DISSERTA%c3%87%c3%83O%20Inara%20Francoyse%20de%20Souza%20Pereira.pdf9abfc6de79b9b58d1e273938caafd488MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/30408/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/30408/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTDISSERTAÇÃO Inara Francoyse de Souza Pereira.pdf.txtDISSERTAÇÃO Inara Francoyse de Souza Pereira.pdf.txtExtracted texttext/plain115149https://repositorio.ufpe.br/bitstream/123456789/30408/4/DISSERTA%c3%87%c3%83O%20Inara%20Francoyse%20de%20Souza%20Pereira.pdf.txtc8e94b237f71fa059ee804f5d0eba890MD54123456789/304082019-10-26 02:43:40.436oai:repositorio.ufpe.br:123456789/30408TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-26T05:43:40Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Testing inference in heteroskedastic linear regressions: a comparison of two alternative approaches
title Testing inference in heteroskedastic linear regressions: a comparison of two alternative approaches
spellingShingle Testing inference in heteroskedastic linear regressions: a comparison of two alternative approaches
PEREIRA, Inara Francoyse de Souza
Estatística
Regressão linear
title_short Testing inference in heteroskedastic linear regressions: a comparison of two alternative approaches
title_full Testing inference in heteroskedastic linear regressions: a comparison of two alternative approaches
title_fullStr Testing inference in heteroskedastic linear regressions: a comparison of two alternative approaches
title_full_unstemmed Testing inference in heteroskedastic linear regressions: a comparison of two alternative approaches
title_sort Testing inference in heteroskedastic linear regressions: a comparison of two alternative approaches
author PEREIRA, Inara Francoyse de Souza
author_facet PEREIRA, Inara Francoyse de Souza
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/5851876967608389
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/2225977664095899
dc.contributor.author.fl_str_mv PEREIRA, Inara Francoyse de Souza
dc.contributor.advisor1.fl_str_mv CRIBARI NETO, Francisco
contributor_str_mv CRIBARI NETO, Francisco
dc.subject.por.fl_str_mv Estatística
Regressão linear
topic Estatística
Regressão linear
description We consider the issue of performing testing inferences on the parameters that index the linear regression model under heteroskedasticity of unknown form. Quasi-t test statistics use asymptotically correct standard errors obtained from heteroskedasticity-consistent covariance matrix estimators. An alternative approach involves making an assumption about the functional form of the response variances and jointly modeling mean and dispersion effects. In this dissertation we compare the accuracy of testing inferences made using the two approaches. We consider several different quasi-t tests and also z tests performed after generalized least squares estimation which was carried out using three different estimation strategies. Our numerical evaluations were performed using different models, different sample sizes, and different heteroskedasticity strengths. The numerical evidence shows that some quasi-t tests are considerably less size distorted in small samples than the tests carried out after the jointly modeling mean and dispersion effects. Finally, we present and discuss two empirical applications.
publishDate 2018
dc.date.issued.fl_str_mv 2018-02-20
dc.date.accessioned.fl_str_mv 2019-04-29T22:23:34Z
dc.date.available.fl_str_mv 2019-04-29T22:23:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/30408
dc.identifier.dark.fl_str_mv ark:/64986/001300000q5kz
url https://repositorio.ufpe.br/handle/123456789/30408
identifier_str_mv ark:/64986/001300000q5kz
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Estatistica
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/30408/5/DISSERTA%c3%87%c3%83O%20Inara%20Francoyse%20de%20Souza%20Pereira.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/30408/1/DISSERTA%c3%87%c3%83O%20Inara%20Francoyse%20de%20Souza%20Pereira.pdf
https://repositorio.ufpe.br/bitstream/123456789/30408/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/30408/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/30408/4/DISSERTA%c3%87%c3%83O%20Inara%20Francoyse%20de%20Souza%20Pereira.pdf.txt
bitstream.checksum.fl_str_mv d557e67230441a114d7cded57285af44
9abfc6de79b9b58d1e273938caafd488
e39d27027a6cc9cb039ad269a5db8e34
4b8a02c7f2818eaf00dcf2260dd5eb08
c8e94b237f71fa059ee804f5d0eba890
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172883251462144