Diagnóstico em modelos de regressão simplex
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000fbgm |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/33514 |
Resumo: | Em muitas situações práticas existe a necessidade de modelar dados no intervalo (0, 1). Esses dados podem ser interpretados como taxas ou proporções e, em geral, apresentam assimetria e heteroscedasticidade, não satisfazendo as suposições do modelo de regressão linear clássico. Diversos modelos de regressão estão sendo estudados com esse objetivo. Por exemplo, o modelo de regressão beta (FERRARI & CRIBARI-NETO, 2004), o modelo de regressão Kumaraswamy (MITNIK & BAEK, 2013), o modelo Johnson Sb (LEMONTE & BAZAN, 2016), o modelo gama unitário (MOUSA et al., 2013), o modelo de regressão simplex (BARNDORFF-NIELSEN & JøRGENSEN, 1991), entre outros. O modelo de regressão simplex, em especial, faz parte dos modelos de dispersão (JøRGENSEN, 1997) que estendem os modelos lineares generalizados (MCCULLAGH & NELDER, 1989). Uma fase muito importante para a escolha de um modelo de regressão é a análise de diagnóstico, visto que todo o desempenho inferencial é baseado no modelo selecionado. Nessa fase, os resíduos desempenham um papel crucial para a verificação da adequação do modelo. A estatística PRESS pode ser utilizada como uma indicação do poder preditivo do modelo e o coeficiente de predição, P², para selecionar modelos com a perspectiva de predição. Nesta tese propomos um novo resíduo para a classe de modelos de regressão simplex não linear. Propomos a estatística PRESS e o coeficiente de predição P² baseados no resíduo ponderado e no novo resíduo. Além disso, avaliamos algumas medidas de qualidade de ajuste (BAYER & CRIBARI-NETO, 2017). Apresentamos resultados de simulações de Monte Carlo para o novo resíduo e paras as estatísticas de predição e de qualidade de ajuste sob diversos cenários. Por fim, apresentamos e discutimos várias aplicações à dados reais. |
id |
UFPE_5c65826d8b01cb30c993a229e376fb4e |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/33514 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
SILVA, Luana Cecília Meireles dahttp://lattes.cnpq.br/5745065100175110http://lattes.cnpq.br/5451260154742484OSPINA, Patrícia Leone EspinheiraCRIBARI NETO, Francisco2019-09-23T19:32:41Z2019-09-23T19:32:41Z2019-02-22https://repositorio.ufpe.br/handle/123456789/33514ark:/64986/001300000fbgmEm muitas situações práticas existe a necessidade de modelar dados no intervalo (0, 1). Esses dados podem ser interpretados como taxas ou proporções e, em geral, apresentam assimetria e heteroscedasticidade, não satisfazendo as suposições do modelo de regressão linear clássico. Diversos modelos de regressão estão sendo estudados com esse objetivo. Por exemplo, o modelo de regressão beta (FERRARI & CRIBARI-NETO, 2004), o modelo de regressão Kumaraswamy (MITNIK & BAEK, 2013), o modelo Johnson Sb (LEMONTE & BAZAN, 2016), o modelo gama unitário (MOUSA et al., 2013), o modelo de regressão simplex (BARNDORFF-NIELSEN & JøRGENSEN, 1991), entre outros. O modelo de regressão simplex, em especial, faz parte dos modelos de dispersão (JøRGENSEN, 1997) que estendem os modelos lineares generalizados (MCCULLAGH & NELDER, 1989). Uma fase muito importante para a escolha de um modelo de regressão é a análise de diagnóstico, visto que todo o desempenho inferencial é baseado no modelo selecionado. Nessa fase, os resíduos desempenham um papel crucial para a verificação da adequação do modelo. A estatística PRESS pode ser utilizada como uma indicação do poder preditivo do modelo e o coeficiente de predição, P², para selecionar modelos com a perspectiva de predição. Nesta tese propomos um novo resíduo para a classe de modelos de regressão simplex não linear. Propomos a estatística PRESS e o coeficiente de predição P² baseados no resíduo ponderado e no novo resíduo. Além disso, avaliamos algumas medidas de qualidade de ajuste (BAYER & CRIBARI-NETO, 2017). Apresentamos resultados de simulações de Monte Carlo para o novo resíduo e paras as estatísticas de predição e de qualidade de ajuste sob diversos cenários. Por fim, apresentamos e discutimos várias aplicações à dados reais.CAPESIn many practical situations there is a need to model data in the interval (0, 1). These data can be interpreted as rates or proportions and, in general, have asymmetry and heteroscedasticity, not satisfying the assumptions of the classical linear regression model. Several regression models are being studied for this purpose. For example, the beta regression model (FERRARI & CRIBARI-NETO, 2004), Kumaraswamy regression model (MITNIK & BAEK, 2013), Johnson Sb regression model (LEMONTE & BAZAN, 2016), unit gamma model (MOUSA et al., 2013), simplex regression model (BARNDORFFNIELSEN & JøRGENSEN, 1991), among others. The simplex regression model, in particular, is part of the dispersion models (JøRGENSEN, 1997) that extend generalized linear models (MCCULLAGH & NELDER, 1989). A very important phase for choosing a regression model is the diagnostic analysis, since all inferential performance is based on the selected model. At this stage, the residuals plays a crucial role in verifying the adequacy of the model. The PRESS statistic can be used as an indication of the predictive power of the model and the prediction coeficiente, P² , to select models from the prediction perspective. In this thesis we propose a new residual for the class of nonlinear simplex regression models. We propose the PRESS statistic and the prediction coefficient P² based on the weighted residual and the new residual. In addition, we evaluated some measures of goodness of fit (BAYER & CRIBARI-NETO, 2017). We present results of Monte Carlo simulations for the new residual and for the prediction and fit quality statistics under different scenarios. Finally, we present and discuss various applications to real data.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em EstatisticaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessEstatísticaModelos de regressãoDiagnóstico em modelos de regressão simplexinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILTESE Luana Cecilia.pdf.jpgTESE Luana Cecilia.pdf.jpgGenerated Thumbnailimage/jpeg1247https://repositorio.ufpe.br/bitstream/123456789/33514/5/TESE%20Luana%20Cecilia.pdf.jpgc7c8d163e0d40d792ddc9a24ba95e0a0MD55ORIGINALTESE Luana Cecilia.pdfTESE Luana Cecilia.pdfapplication/pdf3986548https://repositorio.ufpe.br/bitstream/123456789/33514/1/TESE%20Luana%20Cecilia.pdf4312c9333780c0ae5ce19d823b34fb90MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/33514/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82310https://repositorio.ufpe.br/bitstream/123456789/33514/3/license.txtbd573a5ca8288eb7272482765f819534MD53TEXTTESE Luana Cecilia.pdf.txtTESE Luana Cecilia.pdf.txtExtracted texttext/plain252579https://repositorio.ufpe.br/bitstream/123456789/33514/4/TESE%20Luana%20Cecilia.pdf.txt11ed73be0eb96eaebeab0a57dcbb575fMD54123456789/335142021-07-15 17:45:27.736oai:repositorio.ufpe.br:123456789/33514TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLCBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWlzcXVlciBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcGVsbyByZXNwZWN0aXZvIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVUZQRSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBub21lKHMpIGRvKHMpIGF1dG9yIChlcykgZG9zIGRpcmVpdG9zIGRvIGRvY3VtZW50byBlbnRyZWd1ZSBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZG8gcHJldmlzdG8gbmEgYWzDrW5lYSBjKS4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212021-07-15T20:45:27Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Diagnóstico em modelos de regressão simplex |
title |
Diagnóstico em modelos de regressão simplex |
spellingShingle |
Diagnóstico em modelos de regressão simplex SILVA, Luana Cecília Meireles da Estatística Modelos de regressão |
title_short |
Diagnóstico em modelos de regressão simplex |
title_full |
Diagnóstico em modelos de regressão simplex |
title_fullStr |
Diagnóstico em modelos de regressão simplex |
title_full_unstemmed |
Diagnóstico em modelos de regressão simplex |
title_sort |
Diagnóstico em modelos de regressão simplex |
author |
SILVA, Luana Cecília Meireles da |
author_facet |
SILVA, Luana Cecília Meireles da |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/5745065100175110 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/5451260154742484 |
dc.contributor.author.fl_str_mv |
SILVA, Luana Cecília Meireles da |
dc.contributor.advisor1.fl_str_mv |
OSPINA, Patrícia Leone Espinheira |
dc.contributor.advisor-co1.fl_str_mv |
CRIBARI NETO, Francisco |
contributor_str_mv |
OSPINA, Patrícia Leone Espinheira CRIBARI NETO, Francisco |
dc.subject.por.fl_str_mv |
Estatística Modelos de regressão |
topic |
Estatística Modelos de regressão |
description |
Em muitas situações práticas existe a necessidade de modelar dados no intervalo (0, 1). Esses dados podem ser interpretados como taxas ou proporções e, em geral, apresentam assimetria e heteroscedasticidade, não satisfazendo as suposições do modelo de regressão linear clássico. Diversos modelos de regressão estão sendo estudados com esse objetivo. Por exemplo, o modelo de regressão beta (FERRARI & CRIBARI-NETO, 2004), o modelo de regressão Kumaraswamy (MITNIK & BAEK, 2013), o modelo Johnson Sb (LEMONTE & BAZAN, 2016), o modelo gama unitário (MOUSA et al., 2013), o modelo de regressão simplex (BARNDORFF-NIELSEN & JøRGENSEN, 1991), entre outros. O modelo de regressão simplex, em especial, faz parte dos modelos de dispersão (JøRGENSEN, 1997) que estendem os modelos lineares generalizados (MCCULLAGH & NELDER, 1989). Uma fase muito importante para a escolha de um modelo de regressão é a análise de diagnóstico, visto que todo o desempenho inferencial é baseado no modelo selecionado. Nessa fase, os resíduos desempenham um papel crucial para a verificação da adequação do modelo. A estatística PRESS pode ser utilizada como uma indicação do poder preditivo do modelo e o coeficiente de predição, P², para selecionar modelos com a perspectiva de predição. Nesta tese propomos um novo resíduo para a classe de modelos de regressão simplex não linear. Propomos a estatística PRESS e o coeficiente de predição P² baseados no resíduo ponderado e no novo resíduo. Além disso, avaliamos algumas medidas de qualidade de ajuste (BAYER & CRIBARI-NETO, 2017). Apresentamos resultados de simulações de Monte Carlo para o novo resíduo e paras as estatísticas de predição e de qualidade de ajuste sob diversos cenários. Por fim, apresentamos e discutimos várias aplicações à dados reais. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-09-23T19:32:41Z |
dc.date.available.fl_str_mv |
2019-09-23T19:32:41Z |
dc.date.issued.fl_str_mv |
2019-02-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/33514 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000fbgm |
url |
https://repositorio.ufpe.br/handle/123456789/33514 |
identifier_str_mv |
ark:/64986/001300000fbgm |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Estatistica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/33514/5/TESE%20Luana%20Cecilia.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/33514/1/TESE%20Luana%20Cecilia.pdf https://repositorio.ufpe.br/bitstream/123456789/33514/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/33514/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/33514/4/TESE%20Luana%20Cecilia.pdf.txt |
bitstream.checksum.fl_str_mv |
c7c8d163e0d40d792ddc9a24ba95e0a0 4312c9333780c0ae5ce19d823b34fb90 e39d27027a6cc9cb039ad269a5db8e34 bd573a5ca8288eb7272482765f819534 11ed73be0eb96eaebeab0a57dcbb575f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1814448254806392832 |