Segmentação de pupila utilizando redes neurais batch - SOM
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000011h9b |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/2729 |
Resumo: | Os recentes avanços da tecnologia de informação e o crescimento dos requisitos de segurança têm impulsionado o aprimoramento dos métodos de identificação pessoal. Os métodos de identificação tradicionais baseados em posse (cartões, chaves, entre outros objetos) ou conhecimento (login e senha, por exemplo) apresentam alguns incovenientes, considerando que os objetos podem ser perdidos, roubados ou falsificados e que nomes de usuários e senhas podem ser esquecidos ou até adivinhados. O desenvolvimento dos métodos biométricos de identificação pessoal surgem como uma alternativa para superar estas limitações. Nestes métodos, a associação da identidade passa a ser baseada em características próprias e inerentes a cada pessoa. Estas características representam o que indivíduo é ou como ele realiza alguma ação, e não um objeto que o indivíduo possui ou algo que ele precise lembrar. Desta maneira, as características biométricas não podem ser esquecidas ou compartilhadas e dificilmente são copiadas ou modificadas. Dentre todos os métodos biométricos, os sistemas baseados no reconhecimento de íris vêm ganhando destaque em virtude de ser considerado como uma das modalidades biométricas mais precisas. Uma de suas etapas mais críticas é a etapa de segmentação, na qual, a região da íris é localizada e extraída a partir de uma imagem do olho previamente coletada, para que os modelos biométricos posteriormente gerados contenham apenas informações de íris. Uma representação errônea da região de íris corromperá o modelo biométrico, resultando em baixas taxas de reconhecimento. Essa etapa é, geralmente, subdividida em duas: segmentação de pupila e segmentação de íris, assumindo que a partir da segmentação da pupila, a segmentação da íris torna-se menos complexa, devido, em parte, à área de busca pela íris ser reduzida aos arredores da pupila. Usualmente, as técnicas de segmentação de pupila são baseadas na detecção de círculos, porém, é comum a pupila apresentar-se com um formato irregular em imagens do olho, principalmente, devido a problemas durante a etapa de aquisição da imagem. Nesta dissertação é proposta uma nova técnica baseada na utilização de uma rede neural batch-SOM (BSOM) modificada para o problema de segmentação de pupila que, diferente de outras técnicas, pode assumir qualquer formato, ajustando-se de maneira mais precisa às fronteiras da pupila. Nesta dissertação, também foram sugeridos um método, baseado no algoritmo K-means, para inicializar a rede neural e um método de ajuste do contorno obtido pela rede BSOM. Os resultados finais alcançados mostraram-se excelentes para as bases CasiaIris-V3 Interval, CasiaIris-V4 Syn e MMU1 |
id |
UFPE_60c00e14e53756728fd52f0747741fc5 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/2729 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
Soares de Vasconcelos, GabrielIng Ren, Tsang 2014-06-12T16:00:39Z2014-06-12T16:00:39Z2011-01-31Soares de Vasconcelos, Gabriel; Ing Ren, Tsang. Segmentação de pupila utilizando redes neurais batch - SOM. 2011. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2011.https://repositorio.ufpe.br/handle/123456789/2729ark:/64986/0013000011h9bOs recentes avanços da tecnologia de informação e o crescimento dos requisitos de segurança têm impulsionado o aprimoramento dos métodos de identificação pessoal. Os métodos de identificação tradicionais baseados em posse (cartões, chaves, entre outros objetos) ou conhecimento (login e senha, por exemplo) apresentam alguns incovenientes, considerando que os objetos podem ser perdidos, roubados ou falsificados e que nomes de usuários e senhas podem ser esquecidos ou até adivinhados. O desenvolvimento dos métodos biométricos de identificação pessoal surgem como uma alternativa para superar estas limitações. Nestes métodos, a associação da identidade passa a ser baseada em características próprias e inerentes a cada pessoa. Estas características representam o que indivíduo é ou como ele realiza alguma ação, e não um objeto que o indivíduo possui ou algo que ele precise lembrar. Desta maneira, as características biométricas não podem ser esquecidas ou compartilhadas e dificilmente são copiadas ou modificadas. Dentre todos os métodos biométricos, os sistemas baseados no reconhecimento de íris vêm ganhando destaque em virtude de ser considerado como uma das modalidades biométricas mais precisas. Uma de suas etapas mais críticas é a etapa de segmentação, na qual, a região da íris é localizada e extraída a partir de uma imagem do olho previamente coletada, para que os modelos biométricos posteriormente gerados contenham apenas informações de íris. Uma representação errônea da região de íris corromperá o modelo biométrico, resultando em baixas taxas de reconhecimento. Essa etapa é, geralmente, subdividida em duas: segmentação de pupila e segmentação de íris, assumindo que a partir da segmentação da pupila, a segmentação da íris torna-se menos complexa, devido, em parte, à área de busca pela íris ser reduzida aos arredores da pupila. Usualmente, as técnicas de segmentação de pupila são baseadas na detecção de círculos, porém, é comum a pupila apresentar-se com um formato irregular em imagens do olho, principalmente, devido a problemas durante a etapa de aquisição da imagem. Nesta dissertação é proposta uma nova técnica baseada na utilização de uma rede neural batch-SOM (BSOM) modificada para o problema de segmentação de pupila que, diferente de outras técnicas, pode assumir qualquer formato, ajustando-se de maneira mais precisa às fronteiras da pupila. Nesta dissertação, também foram sugeridos um método, baseado no algoritmo K-means, para inicializar a rede neural e um método de ajuste do contorno obtido pela rede BSOM. Os resultados finais alcançados mostraram-se excelentes para as bases CasiaIris-V3 Interval, CasiaIris-V4 Syn e MMU1porUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessBiometriaReconhecimento de írisSegmentação de pupilaContornos ativosRedes neurais BSOMSegmentação de pupila utilizando redes neurais batch - SOMinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo6835_1.pdf.jpgarquivo6835_1.pdf.jpgGenerated Thumbnailimage/jpeg1291https://repositorio.ufpe.br/bitstream/123456789/2729/4/arquivo6835_1.pdf.jpg956628feaeb117a0ac8b46d2162b9a3fMD54ORIGINALarquivo6835_1.pdfapplication/pdf2219164https://repositorio.ufpe.br/bitstream/123456789/2729/1/arquivo6835_1.pdf8fb0724b72c8498e6e1a173381013aaeMD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/2729/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo6835_1.pdf.txtarquivo6835_1.pdf.txtExtracted texttext/plain230801https://repositorio.ufpe.br/bitstream/123456789/2729/3/arquivo6835_1.pdf.txt0798ee963f362ea9093e166d66137c99MD53123456789/27292019-10-25 12:41:15.323oai:repositorio.ufpe.br:123456789/2729Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T15:41:15Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Segmentação de pupila utilizando redes neurais batch - SOM |
title |
Segmentação de pupila utilizando redes neurais batch - SOM |
spellingShingle |
Segmentação de pupila utilizando redes neurais batch - SOM Soares de Vasconcelos, Gabriel Biometria Reconhecimento de íris Segmentação de pupila Contornos ativos Redes neurais BSOM |
title_short |
Segmentação de pupila utilizando redes neurais batch - SOM |
title_full |
Segmentação de pupila utilizando redes neurais batch - SOM |
title_fullStr |
Segmentação de pupila utilizando redes neurais batch - SOM |
title_full_unstemmed |
Segmentação de pupila utilizando redes neurais batch - SOM |
title_sort |
Segmentação de pupila utilizando redes neurais batch - SOM |
author |
Soares de Vasconcelos, Gabriel |
author_facet |
Soares de Vasconcelos, Gabriel |
author_role |
author |
dc.contributor.author.fl_str_mv |
Soares de Vasconcelos, Gabriel |
dc.contributor.advisor1.fl_str_mv |
Ing Ren, Tsang |
contributor_str_mv |
Ing Ren, Tsang |
dc.subject.por.fl_str_mv |
Biometria Reconhecimento de íris Segmentação de pupila Contornos ativos Redes neurais BSOM |
topic |
Biometria Reconhecimento de íris Segmentação de pupila Contornos ativos Redes neurais BSOM |
description |
Os recentes avanços da tecnologia de informação e o crescimento dos requisitos de segurança têm impulsionado o aprimoramento dos métodos de identificação pessoal. Os métodos de identificação tradicionais baseados em posse (cartões, chaves, entre outros objetos) ou conhecimento (login e senha, por exemplo) apresentam alguns incovenientes, considerando que os objetos podem ser perdidos, roubados ou falsificados e que nomes de usuários e senhas podem ser esquecidos ou até adivinhados. O desenvolvimento dos métodos biométricos de identificação pessoal surgem como uma alternativa para superar estas limitações. Nestes métodos, a associação da identidade passa a ser baseada em características próprias e inerentes a cada pessoa. Estas características representam o que indivíduo é ou como ele realiza alguma ação, e não um objeto que o indivíduo possui ou algo que ele precise lembrar. Desta maneira, as características biométricas não podem ser esquecidas ou compartilhadas e dificilmente são copiadas ou modificadas. Dentre todos os métodos biométricos, os sistemas baseados no reconhecimento de íris vêm ganhando destaque em virtude de ser considerado como uma das modalidades biométricas mais precisas. Uma de suas etapas mais críticas é a etapa de segmentação, na qual, a região da íris é localizada e extraída a partir de uma imagem do olho previamente coletada, para que os modelos biométricos posteriormente gerados contenham apenas informações de íris. Uma representação errônea da região de íris corromperá o modelo biométrico, resultando em baixas taxas de reconhecimento. Essa etapa é, geralmente, subdividida em duas: segmentação de pupila e segmentação de íris, assumindo que a partir da segmentação da pupila, a segmentação da íris torna-se menos complexa, devido, em parte, à área de busca pela íris ser reduzida aos arredores da pupila. Usualmente, as técnicas de segmentação de pupila são baseadas na detecção de círculos, porém, é comum a pupila apresentar-se com um formato irregular em imagens do olho, principalmente, devido a problemas durante a etapa de aquisição da imagem. Nesta dissertação é proposta uma nova técnica baseada na utilização de uma rede neural batch-SOM (BSOM) modificada para o problema de segmentação de pupila que, diferente de outras técnicas, pode assumir qualquer formato, ajustando-se de maneira mais precisa às fronteiras da pupila. Nesta dissertação, também foram sugeridos um método, baseado no algoritmo K-means, para inicializar a rede neural e um método de ajuste do contorno obtido pela rede BSOM. Os resultados finais alcançados mostraram-se excelentes para as bases CasiaIris-V3 Interval, CasiaIris-V4 Syn e MMU1 |
publishDate |
2011 |
dc.date.issued.fl_str_mv |
2011-01-31 |
dc.date.accessioned.fl_str_mv |
2014-06-12T16:00:39Z |
dc.date.available.fl_str_mv |
2014-06-12T16:00:39Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Soares de Vasconcelos, Gabriel; Ing Ren, Tsang. Segmentação de pupila utilizando redes neurais batch - SOM. 2011. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2011. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/2729 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000011h9b |
identifier_str_mv |
Soares de Vasconcelos, Gabriel; Ing Ren, Tsang. Segmentação de pupila utilizando redes neurais batch - SOM. 2011. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2011. ark:/64986/0013000011h9b |
url |
https://repositorio.ufpe.br/handle/123456789/2729 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/2729/4/arquivo6835_1.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/2729/1/arquivo6835_1.pdf https://repositorio.ufpe.br/bitstream/123456789/2729/2/license.txt https://repositorio.ufpe.br/bitstream/123456789/2729/3/arquivo6835_1.pdf.txt |
bitstream.checksum.fl_str_mv |
956628feaeb117a0ac8b46d2162b9a3f 8fb0724b72c8498e6e1a173381013aae 8a4605be74aa9ea9d79846c1fba20a33 0798ee963f362ea9093e166d66137c99 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172972620546048 |