Segmentação e reconhecimento de íris
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000009ggr |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/2215 |
Resumo: | A atual sociedade demanda métodos cada vez mais eficazes para proteger o acesso a instalações, a bens e a informações. Este controle, que pode ser entendido como um problema de identificação, é tradicionalmente realizado através do uso de nomes ou códigos de usuário, senhas, chaves e cartões. Entretanto, cartões e chaves podem ser perdidos, roubados ou copiados e nomes de usuário e senhas podem ser esquecidos, compartilhados ou até adivinhados. Métodos biométricos utilizam características físicas ou comportamentais possuídas pelos indivíduos para realizar a identificação. O uso de informações biométricas tem recebido grande atenção devido ao fato de que tais características não podem ser (ou dificilmente são) esquecidas, compartilhadas ou modificadas, sem assumir certo risco. Entre os diversos métodos biométricos, os sistemas de identificação baseados no reconhecimento da íris humana são frequentemente citados como uma das biometrias mais precisas. A presente dissertação descreve um sistema de reconhecimento de íris, baseado no modelo proposto por Libor Masek, composto pelas etapas de segmentação, normalização, extração de características (e codificação) e comparação. Modificações, em relação ao modelo original, foram propostas para as etapas de segmentação e extração de características. O uso de filtros log-Gabor 2D é investigado e os resultados alcançados são comparados com os obtidos pelo método sugerido por Masek. Um novo esquema para a etapa de segmentação também é apresentado. O método proposto combina técnicas de contorno ativo (AC) ao algoritmo Pulling-Pushing (PP desenvolvido por Zhaofeng He), dando origem ao modelo PP AC. Os resultados obtidos neste trabalho corroboram a idéia de que o reconhecimento de indivíduos através da íris possui ótima precisão, constituindo uma excelente escolha para a construção de sistemas de identificação |
id |
UFPE_cd09e07d653b155eb40dc81bb01fa672 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/2215 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
BASTOS, Carlos Alberto Carneiro MarinhoREN, Tsang Ing2014-06-12T15:55:32Z2014-06-12T15:55:32Z2010-01-31Alberto Carneiro Marinho Bastos, Carlos; Ing Ren, Tsang. Segmentação e reconhecimento de íris. 2010. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2010.https://repositorio.ufpe.br/handle/123456789/2215ark:/64986/0013000009ggrA atual sociedade demanda métodos cada vez mais eficazes para proteger o acesso a instalações, a bens e a informações. Este controle, que pode ser entendido como um problema de identificação, é tradicionalmente realizado através do uso de nomes ou códigos de usuário, senhas, chaves e cartões. Entretanto, cartões e chaves podem ser perdidos, roubados ou copiados e nomes de usuário e senhas podem ser esquecidos, compartilhados ou até adivinhados. Métodos biométricos utilizam características físicas ou comportamentais possuídas pelos indivíduos para realizar a identificação. O uso de informações biométricas tem recebido grande atenção devido ao fato de que tais características não podem ser (ou dificilmente são) esquecidas, compartilhadas ou modificadas, sem assumir certo risco. Entre os diversos métodos biométricos, os sistemas de identificação baseados no reconhecimento da íris humana são frequentemente citados como uma das biometrias mais precisas. A presente dissertação descreve um sistema de reconhecimento de íris, baseado no modelo proposto por Libor Masek, composto pelas etapas de segmentação, normalização, extração de características (e codificação) e comparação. Modificações, em relação ao modelo original, foram propostas para as etapas de segmentação e extração de características. O uso de filtros log-Gabor 2D é investigado e os resultados alcançados são comparados com os obtidos pelo método sugerido por Masek. Um novo esquema para a etapa de segmentação também é apresentado. O método proposto combina técnicas de contorno ativo (AC) ao algoritmo Pulling-Pushing (PP desenvolvido por Zhaofeng He), dando origem ao modelo PP AC. Os resultados obtidos neste trabalho corroboram a idéia de que o reconhecimento de indivíduos através da íris possui ótima precisão, constituindo uma excelente escolha para a construção de sistemas de identificaçãoFundação de Amparo à Ciência e Tecnologia do Estado de PernambucoporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessBiometriaReconhecimento de írisSegmentaçãoFiltros log-gabor 2DContornos ativosSegmentação e reconhecimento de írisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo2239_1.pdf.jpgarquivo2239_1.pdf.jpgGenerated Thumbnailimage/jpeg1233https://repositorio.ufpe.br/bitstream/123456789/2215/4/arquivo2239_1.pdf.jpg9dac3ebe137b44770d21094a558b3a6cMD54ORIGINALarquivo2239_1.pdfapplication/pdf10396822https://repositorio.ufpe.br/bitstream/123456789/2215/1/arquivo2239_1.pdfdccadd3953f0ad40fde3170750e97c82MD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/2215/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo2239_1.pdf.txtarquivo2239_1.pdf.txtExtracted texttext/plain214622https://repositorio.ufpe.br/bitstream/123456789/2215/3/arquivo2239_1.pdf.txt66982b913502555be62fcbf431329d5aMD53123456789/22152019-10-25 12:29:23.049oai:repositorio.ufpe.br:123456789/2215Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T15:29:23Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Segmentação e reconhecimento de íris |
title |
Segmentação e reconhecimento de íris |
spellingShingle |
Segmentação e reconhecimento de íris BASTOS, Carlos Alberto Carneiro Marinho Biometria Reconhecimento de íris Segmentação Filtros log-gabor 2D Contornos ativos |
title_short |
Segmentação e reconhecimento de íris |
title_full |
Segmentação e reconhecimento de íris |
title_fullStr |
Segmentação e reconhecimento de íris |
title_full_unstemmed |
Segmentação e reconhecimento de íris |
title_sort |
Segmentação e reconhecimento de íris |
author |
BASTOS, Carlos Alberto Carneiro Marinho |
author_facet |
BASTOS, Carlos Alberto Carneiro Marinho |
author_role |
author |
dc.contributor.author.fl_str_mv |
BASTOS, Carlos Alberto Carneiro Marinho |
dc.contributor.advisor1.fl_str_mv |
REN, Tsang Ing |
contributor_str_mv |
REN, Tsang Ing |
dc.subject.por.fl_str_mv |
Biometria Reconhecimento de íris Segmentação Filtros log-gabor 2D Contornos ativos |
topic |
Biometria Reconhecimento de íris Segmentação Filtros log-gabor 2D Contornos ativos |
description |
A atual sociedade demanda métodos cada vez mais eficazes para proteger o acesso a instalações, a bens e a informações. Este controle, que pode ser entendido como um problema de identificação, é tradicionalmente realizado através do uso de nomes ou códigos de usuário, senhas, chaves e cartões. Entretanto, cartões e chaves podem ser perdidos, roubados ou copiados e nomes de usuário e senhas podem ser esquecidos, compartilhados ou até adivinhados. Métodos biométricos utilizam características físicas ou comportamentais possuídas pelos indivíduos para realizar a identificação. O uso de informações biométricas tem recebido grande atenção devido ao fato de que tais características não podem ser (ou dificilmente são) esquecidas, compartilhadas ou modificadas, sem assumir certo risco. Entre os diversos métodos biométricos, os sistemas de identificação baseados no reconhecimento da íris humana são frequentemente citados como uma das biometrias mais precisas. A presente dissertação descreve um sistema de reconhecimento de íris, baseado no modelo proposto por Libor Masek, composto pelas etapas de segmentação, normalização, extração de características (e codificação) e comparação. Modificações, em relação ao modelo original, foram propostas para as etapas de segmentação e extração de características. O uso de filtros log-Gabor 2D é investigado e os resultados alcançados são comparados com os obtidos pelo método sugerido por Masek. Um novo esquema para a etapa de segmentação também é apresentado. O método proposto combina técnicas de contorno ativo (AC) ao algoritmo Pulling-Pushing (PP desenvolvido por Zhaofeng He), dando origem ao modelo PP AC. Os resultados obtidos neste trabalho corroboram a idéia de que o reconhecimento de indivíduos através da íris possui ótima precisão, constituindo uma excelente escolha para a construção de sistemas de identificação |
publishDate |
2010 |
dc.date.issued.fl_str_mv |
2010-01-31 |
dc.date.accessioned.fl_str_mv |
2014-06-12T15:55:32Z |
dc.date.available.fl_str_mv |
2014-06-12T15:55:32Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Alberto Carneiro Marinho Bastos, Carlos; Ing Ren, Tsang. Segmentação e reconhecimento de íris. 2010. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2010. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/2215 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000009ggr |
identifier_str_mv |
Alberto Carneiro Marinho Bastos, Carlos; Ing Ren, Tsang. Segmentação e reconhecimento de íris. 2010. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2010. ark:/64986/0013000009ggr |
url |
https://repositorio.ufpe.br/handle/123456789/2215 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/2215/4/arquivo2239_1.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/2215/1/arquivo2239_1.pdf https://repositorio.ufpe.br/bitstream/123456789/2215/2/license.txt https://repositorio.ufpe.br/bitstream/123456789/2215/3/arquivo2239_1.pdf.txt |
bitstream.checksum.fl_str_mv |
9dac3ebe137b44770d21094a558b3a6c dccadd3953f0ad40fde3170750e97c82 8a4605be74aa9ea9d79846c1fba20a33 66982b913502555be62fcbf431329d5a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172769091944448 |