Ramsey minimal graphs

Detalhes bibliográficos
Autor(a) principal: Bollobás,Béla
Data de Publicação: 2001
Outros Autores: Donadelli,Jair, Kohayakawa,Yoshiharu, Schelp,Richard H.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Computer Society
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002001000200005
Resumo: As usual, for graphs <FONT FACE=Symbol>G</font>, G, and H, we write <FONT FACE=Symbol>G ®</FONT> (G, H) to mean that any red-blue colouring of the edges of gamma contains a red copy of G or a blue copy of H. A pair of graphs (G, H) is said to be Ramsey-infinite if there are infinitely many minimal graphs F for which we have <FONT FACE=Symbol>G ®</FONT> (G, H). Let l > 4 be an integer. We show that if H is a 2-connected graph that does not contain induced cycles of length at least l, then the pair (Ck,H) is Ramsey-infinite for any k > l, where Ck denotes the cycle of length k.
id UFRGS-28_c0f5bfdf112aaddf7e986cd68d5282e6
oai_identifier_str oai:scielo:S0104-65002001000200005
network_acronym_str UFRGS-28
network_name_str Journal of the Brazilian Computer Society
repository_id_str
spelling Ramsey minimal graphsRamsey critical graphsSzemerédi's regularity lemmaAs usual, for graphs <FONT FACE=Symbol>G</font>, G, and H, we write <FONT FACE=Symbol>G ®</FONT> (G, H) to mean that any red-blue colouring of the edges of gamma contains a red copy of G or a blue copy of H. A pair of graphs (G, H) is said to be Ramsey-infinite if there are infinitely many minimal graphs F for which we have <FONT FACE=Symbol>G ®</FONT> (G, H). Let l > 4 be an integer. We show that if H is a 2-connected graph that does not contain induced cycles of length at least l, then the pair (Ck,H) is Ramsey-infinite for any k > l, where Ck denotes the cycle of length k.Sociedade Brasileira de Computação2001-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002001000200005Journal of the Brazilian Computer Society v.7 n.3 2001reponame:Journal of the Brazilian Computer Societyinstname:Sociedade Brasileira de Computação (SBC)instacron:UFRGS10.1590/S0104-65002001000200005info:eu-repo/semantics/openAccessBollobás,BélaDonadelli,JairKohayakawa,YoshiharuSchelp,Richard H.eng2003-12-22T00:00:00Zoai:scielo:S0104-65002001000200005Revistahttps://journal-bcs.springeropen.com/PUBhttps://old.scielo.br/oai/scielo-oai.phpjbcs@icmc.sc.usp.br1678-48040104-6500opendoar:2003-12-22T00:00Journal of the Brazilian Computer Society - Sociedade Brasileira de Computação (SBC)false
dc.title.none.fl_str_mv Ramsey minimal graphs
title Ramsey minimal graphs
spellingShingle Ramsey minimal graphs
Bollobás,Béla
Ramsey critical graphs
Szemerédi's regularity lemma
title_short Ramsey minimal graphs
title_full Ramsey minimal graphs
title_fullStr Ramsey minimal graphs
title_full_unstemmed Ramsey minimal graphs
title_sort Ramsey minimal graphs
author Bollobás,Béla
author_facet Bollobás,Béla
Donadelli,Jair
Kohayakawa,Yoshiharu
Schelp,Richard H.
author_role author
author2 Donadelli,Jair
Kohayakawa,Yoshiharu
Schelp,Richard H.
author2_role author
author
author
dc.contributor.author.fl_str_mv Bollobás,Béla
Donadelli,Jair
Kohayakawa,Yoshiharu
Schelp,Richard H.
dc.subject.por.fl_str_mv Ramsey critical graphs
Szemerédi's regularity lemma
topic Ramsey critical graphs
Szemerédi's regularity lemma
description As usual, for graphs <FONT FACE=Symbol>G</font>, G, and H, we write <FONT FACE=Symbol>G ®</FONT> (G, H) to mean that any red-blue colouring of the edges of gamma contains a red copy of G or a blue copy of H. A pair of graphs (G, H) is said to be Ramsey-infinite if there are infinitely many minimal graphs F for which we have <FONT FACE=Symbol>G ®</FONT> (G, H). Let l > 4 be an integer. We show that if H is a 2-connected graph that does not contain induced cycles of length at least l, then the pair (Ck,H) is Ramsey-infinite for any k > l, where Ck denotes the cycle of length k.
publishDate 2001
dc.date.none.fl_str_mv 2001-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002001000200005
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002001000200005
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0104-65002001000200005
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Computação
publisher.none.fl_str_mv Sociedade Brasileira de Computação
dc.source.none.fl_str_mv Journal of the Brazilian Computer Society v.7 n.3 2001
reponame:Journal of the Brazilian Computer Society
instname:Sociedade Brasileira de Computação (SBC)
instacron:UFRGS
instname_str Sociedade Brasileira de Computação (SBC)
instacron_str UFRGS
institution UFRGS
reponame_str Journal of the Brazilian Computer Society
collection Journal of the Brazilian Computer Society
repository.name.fl_str_mv Journal of the Brazilian Computer Society - Sociedade Brasileira de Computação (SBC)
repository.mail.fl_str_mv jbcs@icmc.sc.usp.br
_version_ 1754734669564215296