Ramsey minimal graphs
Autor(a) principal: | |
---|---|
Data de Publicação: | 2001 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of the Brazilian Computer Society |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002001000200005 |
Resumo: | As usual, for graphs <FONT FACE=Symbol>G</font>, G, and H, we write <FONT FACE=Symbol>G ®</FONT> (G, H) to mean that any red-blue colouring of the edges of gamma contains a red copy of G or a blue copy of H. A pair of graphs (G, H) is said to be Ramsey-infinite if there are infinitely many minimal graphs F for which we have <FONT FACE=Symbol>G ®</FONT> (G, H). Let l > 4 be an integer. We show that if H is a 2-connected graph that does not contain induced cycles of length at least l, then the pair (Ck,H) is Ramsey-infinite for any k > l, where Ck denotes the cycle of length k. |
id |
UFRGS-28_c0f5bfdf112aaddf7e986cd68d5282e6 |
---|---|
oai_identifier_str |
oai:scielo:S0104-65002001000200005 |
network_acronym_str |
UFRGS-28 |
network_name_str |
Journal of the Brazilian Computer Society |
repository_id_str |
|
spelling |
Ramsey minimal graphsRamsey critical graphsSzemerédi's regularity lemmaAs usual, for graphs <FONT FACE=Symbol>G</font>, G, and H, we write <FONT FACE=Symbol>G ®</FONT> (G, H) to mean that any red-blue colouring of the edges of gamma contains a red copy of G or a blue copy of H. A pair of graphs (G, H) is said to be Ramsey-infinite if there are infinitely many minimal graphs F for which we have <FONT FACE=Symbol>G ®</FONT> (G, H). Let l > 4 be an integer. We show that if H is a 2-connected graph that does not contain induced cycles of length at least l, then the pair (Ck,H) is Ramsey-infinite for any k > l, where Ck denotes the cycle of length k.Sociedade Brasileira de Computação2001-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002001000200005Journal of the Brazilian Computer Society v.7 n.3 2001reponame:Journal of the Brazilian Computer Societyinstname:Sociedade Brasileira de Computação (SBC)instacron:UFRGS10.1590/S0104-65002001000200005info:eu-repo/semantics/openAccessBollobás,BélaDonadelli,JairKohayakawa,YoshiharuSchelp,Richard H.eng2003-12-22T00:00:00Zoai:scielo:S0104-65002001000200005Revistahttps://journal-bcs.springeropen.com/PUBhttps://old.scielo.br/oai/scielo-oai.phpjbcs@icmc.sc.usp.br1678-48040104-6500opendoar:2003-12-22T00:00Journal of the Brazilian Computer Society - Sociedade Brasileira de Computação (SBC)false |
dc.title.none.fl_str_mv |
Ramsey minimal graphs |
title |
Ramsey minimal graphs |
spellingShingle |
Ramsey minimal graphs Bollobás,Béla Ramsey critical graphs Szemerédi's regularity lemma |
title_short |
Ramsey minimal graphs |
title_full |
Ramsey minimal graphs |
title_fullStr |
Ramsey minimal graphs |
title_full_unstemmed |
Ramsey minimal graphs |
title_sort |
Ramsey minimal graphs |
author |
Bollobás,Béla |
author_facet |
Bollobás,Béla Donadelli,Jair Kohayakawa,Yoshiharu Schelp,Richard H. |
author_role |
author |
author2 |
Donadelli,Jair Kohayakawa,Yoshiharu Schelp,Richard H. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Bollobás,Béla Donadelli,Jair Kohayakawa,Yoshiharu Schelp,Richard H. |
dc.subject.por.fl_str_mv |
Ramsey critical graphs Szemerédi's regularity lemma |
topic |
Ramsey critical graphs Szemerédi's regularity lemma |
description |
As usual, for graphs <FONT FACE=Symbol>G</font>, G, and H, we write <FONT FACE=Symbol>G ®</FONT> (G, H) to mean that any red-blue colouring of the edges of gamma contains a red copy of G or a blue copy of H. A pair of graphs (G, H) is said to be Ramsey-infinite if there are infinitely many minimal graphs F for which we have <FONT FACE=Symbol>G ®</FONT> (G, H). Let l > 4 be an integer. We show that if H is a 2-connected graph that does not contain induced cycles of length at least l, then the pair (Ck,H) is Ramsey-infinite for any k > l, where Ck denotes the cycle of length k. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002001000200005 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002001000200005 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0104-65002001000200005 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Computação |
publisher.none.fl_str_mv |
Sociedade Brasileira de Computação |
dc.source.none.fl_str_mv |
Journal of the Brazilian Computer Society v.7 n.3 2001 reponame:Journal of the Brazilian Computer Society instname:Sociedade Brasileira de Computação (SBC) instacron:UFRGS |
instname_str |
Sociedade Brasileira de Computação (SBC) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Journal of the Brazilian Computer Society |
collection |
Journal of the Brazilian Computer Society |
repository.name.fl_str_mv |
Journal of the Brazilian Computer Society - Sociedade Brasileira de Computação (SBC) |
repository.mail.fl_str_mv |
jbcs@icmc.sc.usp.br |
_version_ |
1754734669564215296 |