A neural network-based inversion method of a feedback linearization controller applied to a hydraulic actuator

Detalhes bibliográficos
Autor(a) principal: Borges, Fábio Augusto Pires
Data de Publicação: 2021
Outros Autores: Perondi, Eduardo André, Cunha, Mauro André Barbosa, Sobczyk Sobrinho, Mario Roland
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/222246
Resumo: In this work, we use a neural network as a substitute for the traditional analytic functions employed as an inversion set in feedback linearization control algorithms applied to hydraulic actuators. Although very efective and with strong stability guarantees, feedback linearization control depends on parameters that are difcult to determine, requiring large amounts of experimental efort to be identifed accurately. On the other hands, neural networks require little efort regarding parameter identifcation, but pose signifcant hindrances to the development of solid stability analyses and/or to the processing capabilities of the control hardware. Here, we combine these techniques to control the positioning of a hydraulic actuator, without requiring extensive identifcation procedures nor losing stability guarantees for the closed-loop system, at reasonable computing demands. The efectiveness of the proposed method is verifed both theoretically and by means of experimental results.
id UFRGS-2_0b6d6c6d48aab0cff96138d69a7a9212
oai_identifier_str oai:www.lume.ufrgs.br:10183/222246
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Borges, Fábio Augusto PiresPerondi, Eduardo AndréCunha, Mauro André BarbosaSobczyk Sobrinho, Mario Roland2021-06-16T04:36:36Z20211678-5878http://hdl.handle.net/10183/222246001126065In this work, we use a neural network as a substitute for the traditional analytic functions employed as an inversion set in feedback linearization control algorithms applied to hydraulic actuators. Although very efective and with strong stability guarantees, feedback linearization control depends on parameters that are difcult to determine, requiring large amounts of experimental efort to be identifed accurately. On the other hands, neural networks require little efort regarding parameter identifcation, but pose signifcant hindrances to the development of solid stability analyses and/or to the processing capabilities of the control hardware. Here, we combine these techniques to control the positioning of a hydraulic actuator, without requiring extensive identifcation procedures nor losing stability guarantees for the closed-loop system, at reasonable computing demands. The efectiveness of the proposed method is verifed both theoretically and by means of experimental results.application/pdfengJournal of the Brazilian Society of Mechanical Sciences and Engineering. Rio de Janeiro. Vol. 43 (2021), Art. 248, 19 p.Atuador hidráulicoRedes neuraisHydraulic actuator controlNeural network-based identifcationFeedforward multilayer perceptronFeedback linearizationA neural network-based inversion method of a feedback linearization controller applied to a hydraulic actuatorinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001126065.pdf.txt001126065.pdf.txtExtracted Texttext/plain60610http://www.lume.ufrgs.br/bitstream/10183/222246/2/001126065.pdf.txtaa72cca4b05d09948ebdbbad16beb141MD52ORIGINAL001126065.pdfTexto completo (inglês)application/pdf3390950http://www.lume.ufrgs.br/bitstream/10183/222246/1/001126065.pdf321e36150fa534c9a55381f027700186MD5110183/2222462021-06-26 04:41:00.763576oai:www.lume.ufrgs.br:10183/222246Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2021-06-26T07:41Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv A neural network-based inversion method of a feedback linearization controller applied to a hydraulic actuator
title A neural network-based inversion method of a feedback linearization controller applied to a hydraulic actuator
spellingShingle A neural network-based inversion method of a feedback linearization controller applied to a hydraulic actuator
Borges, Fábio Augusto Pires
Atuador hidráulico
Redes neurais
Hydraulic actuator control
Neural network-based identifcation
Feedforward multilayer perceptron
Feedback linearization
title_short A neural network-based inversion method of a feedback linearization controller applied to a hydraulic actuator
title_full A neural network-based inversion method of a feedback linearization controller applied to a hydraulic actuator
title_fullStr A neural network-based inversion method of a feedback linearization controller applied to a hydraulic actuator
title_full_unstemmed A neural network-based inversion method of a feedback linearization controller applied to a hydraulic actuator
title_sort A neural network-based inversion method of a feedback linearization controller applied to a hydraulic actuator
author Borges, Fábio Augusto Pires
author_facet Borges, Fábio Augusto Pires
Perondi, Eduardo André
Cunha, Mauro André Barbosa
Sobczyk Sobrinho, Mario Roland
author_role author
author2 Perondi, Eduardo André
Cunha, Mauro André Barbosa
Sobczyk Sobrinho, Mario Roland
author2_role author
author
author
dc.contributor.author.fl_str_mv Borges, Fábio Augusto Pires
Perondi, Eduardo André
Cunha, Mauro André Barbosa
Sobczyk Sobrinho, Mario Roland
dc.subject.por.fl_str_mv Atuador hidráulico
Redes neurais
topic Atuador hidráulico
Redes neurais
Hydraulic actuator control
Neural network-based identifcation
Feedforward multilayer perceptron
Feedback linearization
dc.subject.eng.fl_str_mv Hydraulic actuator control
Neural network-based identifcation
Feedforward multilayer perceptron
Feedback linearization
description In this work, we use a neural network as a substitute for the traditional analytic functions employed as an inversion set in feedback linearization control algorithms applied to hydraulic actuators. Although very efective and with strong stability guarantees, feedback linearization control depends on parameters that are difcult to determine, requiring large amounts of experimental efort to be identifed accurately. On the other hands, neural networks require little efort regarding parameter identifcation, but pose signifcant hindrances to the development of solid stability analyses and/or to the processing capabilities of the control hardware. Here, we combine these techniques to control the positioning of a hydraulic actuator, without requiring extensive identifcation procedures nor losing stability guarantees for the closed-loop system, at reasonable computing demands. The efectiveness of the proposed method is verifed both theoretically and by means of experimental results.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-06-16T04:36:36Z
dc.date.issued.fl_str_mv 2021
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/other
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/222246
dc.identifier.issn.pt_BR.fl_str_mv 1678-5878
dc.identifier.nrb.pt_BR.fl_str_mv 001126065
identifier_str_mv 1678-5878
001126065
url http://hdl.handle.net/10183/222246
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Journal of the Brazilian Society of Mechanical Sciences and Engineering. Rio de Janeiro. Vol. 43 (2021), Art. 248, 19 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/222246/2/001126065.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/222246/1/001126065.pdf
bitstream.checksum.fl_str_mv aa72cca4b05d09948ebdbbad16beb141
321e36150fa534c9a55381f027700186
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447745903722496