A neural network-based inversion method of a feedback linearization controller applied to a hydraulic actuator
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/222246 |
Resumo: | In this work, we use a neural network as a substitute for the traditional analytic functions employed as an inversion set in feedback linearization control algorithms applied to hydraulic actuators. Although very efective and with strong stability guarantees, feedback linearization control depends on parameters that are difcult to determine, requiring large amounts of experimental efort to be identifed accurately. On the other hands, neural networks require little efort regarding parameter identifcation, but pose signifcant hindrances to the development of solid stability analyses and/or to the processing capabilities of the control hardware. Here, we combine these techniques to control the positioning of a hydraulic actuator, without requiring extensive identifcation procedures nor losing stability guarantees for the closed-loop system, at reasonable computing demands. The efectiveness of the proposed method is verifed both theoretically and by means of experimental results. |
id |
UFRGS-2_0b6d6c6d48aab0cff96138d69a7a9212 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/222246 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Borges, Fábio Augusto PiresPerondi, Eduardo AndréCunha, Mauro André BarbosaSobczyk Sobrinho, Mario Roland2021-06-16T04:36:36Z20211678-5878http://hdl.handle.net/10183/222246001126065In this work, we use a neural network as a substitute for the traditional analytic functions employed as an inversion set in feedback linearization control algorithms applied to hydraulic actuators. Although very efective and with strong stability guarantees, feedback linearization control depends on parameters that are difcult to determine, requiring large amounts of experimental efort to be identifed accurately. On the other hands, neural networks require little efort regarding parameter identifcation, but pose signifcant hindrances to the development of solid stability analyses and/or to the processing capabilities of the control hardware. Here, we combine these techniques to control the positioning of a hydraulic actuator, without requiring extensive identifcation procedures nor losing stability guarantees for the closed-loop system, at reasonable computing demands. The efectiveness of the proposed method is verifed both theoretically and by means of experimental results.application/pdfengJournal of the Brazilian Society of Mechanical Sciences and Engineering. Rio de Janeiro. Vol. 43 (2021), Art. 248, 19 p.Atuador hidráulicoRedes neuraisHydraulic actuator controlNeural network-based identifcationFeedforward multilayer perceptronFeedback linearizationA neural network-based inversion method of a feedback linearization controller applied to a hydraulic actuatorinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001126065.pdf.txt001126065.pdf.txtExtracted Texttext/plain60610http://www.lume.ufrgs.br/bitstream/10183/222246/2/001126065.pdf.txtaa72cca4b05d09948ebdbbad16beb141MD52ORIGINAL001126065.pdfTexto completo (inglês)application/pdf3390950http://www.lume.ufrgs.br/bitstream/10183/222246/1/001126065.pdf321e36150fa534c9a55381f027700186MD5110183/2222462021-06-26 04:41:00.763576oai:www.lume.ufrgs.br:10183/222246Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2021-06-26T07:41Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
A neural network-based inversion method of a feedback linearization controller applied to a hydraulic actuator |
title |
A neural network-based inversion method of a feedback linearization controller applied to a hydraulic actuator |
spellingShingle |
A neural network-based inversion method of a feedback linearization controller applied to a hydraulic actuator Borges, Fábio Augusto Pires Atuador hidráulico Redes neurais Hydraulic actuator control Neural network-based identifcation Feedforward multilayer perceptron Feedback linearization |
title_short |
A neural network-based inversion method of a feedback linearization controller applied to a hydraulic actuator |
title_full |
A neural network-based inversion method of a feedback linearization controller applied to a hydraulic actuator |
title_fullStr |
A neural network-based inversion method of a feedback linearization controller applied to a hydraulic actuator |
title_full_unstemmed |
A neural network-based inversion method of a feedback linearization controller applied to a hydraulic actuator |
title_sort |
A neural network-based inversion method of a feedback linearization controller applied to a hydraulic actuator |
author |
Borges, Fábio Augusto Pires |
author_facet |
Borges, Fábio Augusto Pires Perondi, Eduardo André Cunha, Mauro André Barbosa Sobczyk Sobrinho, Mario Roland |
author_role |
author |
author2 |
Perondi, Eduardo André Cunha, Mauro André Barbosa Sobczyk Sobrinho, Mario Roland |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Borges, Fábio Augusto Pires Perondi, Eduardo André Cunha, Mauro André Barbosa Sobczyk Sobrinho, Mario Roland |
dc.subject.por.fl_str_mv |
Atuador hidráulico Redes neurais |
topic |
Atuador hidráulico Redes neurais Hydraulic actuator control Neural network-based identifcation Feedforward multilayer perceptron Feedback linearization |
dc.subject.eng.fl_str_mv |
Hydraulic actuator control Neural network-based identifcation Feedforward multilayer perceptron Feedback linearization |
description |
In this work, we use a neural network as a substitute for the traditional analytic functions employed as an inversion set in feedback linearization control algorithms applied to hydraulic actuators. Although very efective and with strong stability guarantees, feedback linearization control depends on parameters that are difcult to determine, requiring large amounts of experimental efort to be identifed accurately. On the other hands, neural networks require little efort regarding parameter identifcation, but pose signifcant hindrances to the development of solid stability analyses and/or to the processing capabilities of the control hardware. Here, we combine these techniques to control the positioning of a hydraulic actuator, without requiring extensive identifcation procedures nor losing stability guarantees for the closed-loop system, at reasonable computing demands. The efectiveness of the proposed method is verifed both theoretically and by means of experimental results. |
publishDate |
2021 |
dc.date.accessioned.fl_str_mv |
2021-06-16T04:36:36Z |
dc.date.issued.fl_str_mv |
2021 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/other |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/222246 |
dc.identifier.issn.pt_BR.fl_str_mv |
1678-5878 |
dc.identifier.nrb.pt_BR.fl_str_mv |
001126065 |
identifier_str_mv |
1678-5878 001126065 |
url |
http://hdl.handle.net/10183/222246 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Journal of the Brazilian Society of Mechanical Sciences and Engineering. Rio de Janeiro. Vol. 43 (2021), Art. 248, 19 p. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/222246/2/001126065.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/222246/1/001126065.pdf |
bitstream.checksum.fl_str_mv |
aa72cca4b05d09948ebdbbad16beb141 321e36150fa534c9a55381f027700186 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447745903722496 |