Cumulant expansion of the periodic Anderson model : general derivation
Autor(a) principal: | |
---|---|
Data de Publicação: | 1994 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/104226 |
Resumo: | We extend to the periodic Anderson model (PAM) the diagrammatic expansion in cumulants that was employed by Hubbard to study his model of a narrow band of strongly correlated electrons. The PAM is a lattice of localized and strongly correlated electrons with spin one-half and without orbital degeneracy, hybridized with a wide band of uncorrelated conduction electrons. We have extended the model by considering localized electronic states with an arbitrary scheme of energy levels: this extension would be useful to study intermediate valence compounds of Eu or Tm with the present formalism. We give the rules for the diagrammatic. Calculation of the grand canonical potential and of the Green's functions for the general model: only connected diagrams appear in those calculations and the lattice sums are unrestricted. To generate the cumulant averages it was necessary to employ externai fields ξ that are Grassmann variables. We liave found a simple way to extend the diagrammatic rules to the ξ f ≠ O case. The absence of excluded site restrictions, that leads to complicated excluded volume problems in other treatments, and the existence of linked cluster expansions, are features of the cumulant expansion. As an application of the present method, we have calculated the occupation numbers of localized and conduction electrons for the PAM in the limit of infinite Coulomb repulsion (U →∞). |
id |
UFRGS-2_34cc38b04d6be9a8b6008eb5f878fb30 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/104226 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Figueira, M.S.Foglio, M.E.Martinez Pino, Gerardo Guido2014-10-07T02:11:27Z19940163-1829http://hdl.handle.net/10183/104226000256564We extend to the periodic Anderson model (PAM) the diagrammatic expansion in cumulants that was employed by Hubbard to study his model of a narrow band of strongly correlated electrons. The PAM is a lattice of localized and strongly correlated electrons with spin one-half and without orbital degeneracy, hybridized with a wide band of uncorrelated conduction electrons. We have extended the model by considering localized electronic states with an arbitrary scheme of energy levels: this extension would be useful to study intermediate valence compounds of Eu or Tm with the present formalism. We give the rules for the diagrammatic. Calculation of the grand canonical potential and of the Green's functions for the general model: only connected diagrams appear in those calculations and the lattice sums are unrestricted. To generate the cumulant averages it was necessary to employ externai fields ξ that are Grassmann variables. We liave found a simple way to extend the diagrammatic rules to the ξ f ≠ O case. The absence of excluded site restrictions, that leads to complicated excluded volume problems in other treatments, and the existence of linked cluster expansions, are features of the cumulant expansion. As an application of the present method, we have calculated the occupation numbers of localized and conduction electrons for the PAM in the limit of infinite Coulomb repulsion (U →∞).application/pdfengPhysical review. B, Condensed matter. New York. Vol. 50, no. 24 (Dec. 1994), p. 17933-17952Física da matéria condensadaModelo de AndersonMetodos de funcoes de greenSistemas eletronicos fortemente correlacionadosEfeito kondoCumulant expansion of the periodic Anderson model : general derivationEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000256564.pdf000256564.pdfTexto completo (inglês)application/pdf2870393http://www.lume.ufrgs.br/bitstream/10183/104226/1/000256564.pdf9b1221c7f953073a2f9fc264afed2f1aMD51TEXT000256564.pdf.txt000256564.pdf.txtExtracted Texttext/plain90792http://www.lume.ufrgs.br/bitstream/10183/104226/2/000256564.pdf.txte237e6a81f9344b92491b6f465dee5bbMD5210183/1042262018-06-07 02:32:31.670687oai:www.lume.ufrgs.br:10183/104226Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2018-06-07T05:32:31Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Cumulant expansion of the periodic Anderson model : general derivation |
title |
Cumulant expansion of the periodic Anderson model : general derivation |
spellingShingle |
Cumulant expansion of the periodic Anderson model : general derivation Figueira, M.S. Física da matéria condensada Modelo de Anderson Metodos de funcoes de green Sistemas eletronicos fortemente correlacionados Efeito kondo |
title_short |
Cumulant expansion of the periodic Anderson model : general derivation |
title_full |
Cumulant expansion of the periodic Anderson model : general derivation |
title_fullStr |
Cumulant expansion of the periodic Anderson model : general derivation |
title_full_unstemmed |
Cumulant expansion of the periodic Anderson model : general derivation |
title_sort |
Cumulant expansion of the periodic Anderson model : general derivation |
author |
Figueira, M.S. |
author_facet |
Figueira, M.S. Foglio, M.E. Martinez Pino, Gerardo Guido |
author_role |
author |
author2 |
Foglio, M.E. Martinez Pino, Gerardo Guido |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Figueira, M.S. Foglio, M.E. Martinez Pino, Gerardo Guido |
dc.subject.por.fl_str_mv |
Física da matéria condensada Modelo de Anderson Metodos de funcoes de green Sistemas eletronicos fortemente correlacionados Efeito kondo |
topic |
Física da matéria condensada Modelo de Anderson Metodos de funcoes de green Sistemas eletronicos fortemente correlacionados Efeito kondo |
description |
We extend to the periodic Anderson model (PAM) the diagrammatic expansion in cumulants that was employed by Hubbard to study his model of a narrow band of strongly correlated electrons. The PAM is a lattice of localized and strongly correlated electrons with spin one-half and without orbital degeneracy, hybridized with a wide band of uncorrelated conduction electrons. We have extended the model by considering localized electronic states with an arbitrary scheme of energy levels: this extension would be useful to study intermediate valence compounds of Eu or Tm with the present formalism. We give the rules for the diagrammatic. Calculation of the grand canonical potential and of the Green's functions for the general model: only connected diagrams appear in those calculations and the lattice sums are unrestricted. To generate the cumulant averages it was necessary to employ externai fields ξ that are Grassmann variables. We liave found a simple way to extend the diagrammatic rules to the ξ f ≠ O case. The absence of excluded site restrictions, that leads to complicated excluded volume problems in other treatments, and the existence of linked cluster expansions, are features of the cumulant expansion. As an application of the present method, we have calculated the occupation numbers of localized and conduction electrons for the PAM in the limit of infinite Coulomb repulsion (U →∞). |
publishDate |
1994 |
dc.date.issued.fl_str_mv |
1994 |
dc.date.accessioned.fl_str_mv |
2014-10-07T02:11:27Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/104226 |
dc.identifier.issn.pt_BR.fl_str_mv |
0163-1829 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000256564 |
identifier_str_mv |
0163-1829 000256564 |
url |
http://hdl.handle.net/10183/104226 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Physical review. B, Condensed matter. New York. Vol. 50, no. 24 (Dec. 1994), p. 17933-17952 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/104226/1/000256564.pdf http://www.lume.ufrgs.br/bitstream/10183/104226/2/000256564.pdf.txt |
bitstream.checksum.fl_str_mv |
9b1221c7f953073a2f9fc264afed2f1a e237e6a81f9344b92491b6f465dee5bb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447561913237504 |