Introducing non-stationarity into the development of intensity-duration-frequency curves under a changing climate

Detalhes bibliográficos
Autor(a) principal: Silva, Daniele Feitoza
Data de Publicação: 2021
Outros Autores: Simonovic, Slobodan P., Schardong, André, Goldenfum, Joel Avruch
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/233993
Resumo: Intensity-duration-frequency (IDF) relationships are traditional tools in water infrastructure planning and design. IDFs are developed under a stationarity assumption which may not be realistic, neither in the present nor in the future, under a changing climatic condition. This paper introduces a framework for generating non-stationary IDFs under climate change, assuming that probability of occurrence of quantiles changes over time. Using Extreme Value Theory, eight trend combinations in Generalized Extreme Value (GEV) parameters using time as covariate are compared with a stationary GEV, to identify the best alternative. Additionally, a modified Equidistance Quantile Matching (EQMNS) method is implemented to develop IDFs for future conditions, introducing non-stationarity where justified, based on the Global Climate Models (GCM). The methodology is applied for Moncton and Shearwater gauges in Northeast Canada. From the results, it is observed that EQMNS is able to capture the trends in the present and to translate them to estimated future rainfall intensities. Comparison of present and future IDFs strongly suggest that return period can be reduced by more than 50 years in the estimates of future rainfall intensities (e.g., historical 100-yr return period extreme rainfall may have frequency smaller than 50-yr under future conditions), raising attention to emerging risks to water infrastructure systems.
id UFRGS-2_94a3f11bdf15039d29687d85214858fe
oai_identifier_str oai:www.lume.ufrgs.br:10183/233993
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Silva, Daniele FeitozaSimonovic, Slobodan P.Schardong, AndréGoldenfum, Joel Avruch2022-01-12T04:36:53Z20212073-4441http://hdl.handle.net/10183/233993001126616Intensity-duration-frequency (IDF) relationships are traditional tools in water infrastructure planning and design. IDFs are developed under a stationarity assumption which may not be realistic, neither in the present nor in the future, under a changing climatic condition. This paper introduces a framework for generating non-stationary IDFs under climate change, assuming that probability of occurrence of quantiles changes over time. Using Extreme Value Theory, eight trend combinations in Generalized Extreme Value (GEV) parameters using time as covariate are compared with a stationary GEV, to identify the best alternative. Additionally, a modified Equidistance Quantile Matching (EQMNS) method is implemented to develop IDFs for future conditions, introducing non-stationarity where justified, based on the Global Climate Models (GCM). The methodology is applied for Moncton and Shearwater gauges in Northeast Canada. From the results, it is observed that EQMNS is able to capture the trends in the present and to translate them to estimated future rainfall intensities. Comparison of present and future IDFs strongly suggest that return period can be reduced by more than 50 years in the estimates of future rainfall intensities (e.g., historical 100-yr return period extreme rainfall may have frequency smaller than 50-yr under future conditions), raising attention to emerging risks to water infrastructure systems.application/pdfengWater. Basel [Switzerland]. Vol. 13, n. 8 (Apr.-2 2021), [Article] 1008, 22 p.Curvas IDFChuvaTeoria dos valores extremosMudanças climáticasCanadáIntensity-duration-frequency curveNon-stationarityClimate changeRainfall intensitiesIntroducing non-stationarity into the development of intensity-duration-frequency curves under a changing climateEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001126616.pdf.txt001126616.pdf.txtExtracted Texttext/plain66771http://www.lume.ufrgs.br/bitstream/10183/233993/2/001126616.pdf.txt4760893c3d2e039f0441f1c3611fbba7MD52ORIGINAL001126616.pdfTexto completo (inglês)application/pdf5545714http://www.lume.ufrgs.br/bitstream/10183/233993/1/001126616.pdf445d5fe4105142e612747acd979017dfMD5110183/2339932022-02-22 05:09:33.363126oai:www.lume.ufrgs.br:10183/233993Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2022-02-22T08:09:33Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Introducing non-stationarity into the development of intensity-duration-frequency curves under a changing climate
title Introducing non-stationarity into the development of intensity-duration-frequency curves under a changing climate
spellingShingle Introducing non-stationarity into the development of intensity-duration-frequency curves under a changing climate
Silva, Daniele Feitoza
Curvas IDF
Chuva
Teoria dos valores extremos
Mudanças climáticas
Canadá
Intensity-duration-frequency curve
Non-stationarity
Climate change
Rainfall intensities
title_short Introducing non-stationarity into the development of intensity-duration-frequency curves under a changing climate
title_full Introducing non-stationarity into the development of intensity-duration-frequency curves under a changing climate
title_fullStr Introducing non-stationarity into the development of intensity-duration-frequency curves under a changing climate
title_full_unstemmed Introducing non-stationarity into the development of intensity-duration-frequency curves under a changing climate
title_sort Introducing non-stationarity into the development of intensity-duration-frequency curves under a changing climate
author Silva, Daniele Feitoza
author_facet Silva, Daniele Feitoza
Simonovic, Slobodan P.
Schardong, André
Goldenfum, Joel Avruch
author_role author
author2 Simonovic, Slobodan P.
Schardong, André
Goldenfum, Joel Avruch
author2_role author
author
author
dc.contributor.author.fl_str_mv Silva, Daniele Feitoza
Simonovic, Slobodan P.
Schardong, André
Goldenfum, Joel Avruch
dc.subject.por.fl_str_mv Curvas IDF
Chuva
Teoria dos valores extremos
Mudanças climáticas
Canadá
topic Curvas IDF
Chuva
Teoria dos valores extremos
Mudanças climáticas
Canadá
Intensity-duration-frequency curve
Non-stationarity
Climate change
Rainfall intensities
dc.subject.eng.fl_str_mv Intensity-duration-frequency curve
Non-stationarity
Climate change
Rainfall intensities
description Intensity-duration-frequency (IDF) relationships are traditional tools in water infrastructure planning and design. IDFs are developed under a stationarity assumption which may not be realistic, neither in the present nor in the future, under a changing climatic condition. This paper introduces a framework for generating non-stationary IDFs under climate change, assuming that probability of occurrence of quantiles changes over time. Using Extreme Value Theory, eight trend combinations in Generalized Extreme Value (GEV) parameters using time as covariate are compared with a stationary GEV, to identify the best alternative. Additionally, a modified Equidistance Quantile Matching (EQMNS) method is implemented to develop IDFs for future conditions, introducing non-stationarity where justified, based on the Global Climate Models (GCM). The methodology is applied for Moncton and Shearwater gauges in Northeast Canada. From the results, it is observed that EQMNS is able to capture the trends in the present and to translate them to estimated future rainfall intensities. Comparison of present and future IDFs strongly suggest that return period can be reduced by more than 50 years in the estimates of future rainfall intensities (e.g., historical 100-yr return period extreme rainfall may have frequency smaller than 50-yr under future conditions), raising attention to emerging risks to water infrastructure systems.
publishDate 2021
dc.date.issued.fl_str_mv 2021
dc.date.accessioned.fl_str_mv 2022-01-12T04:36:53Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/233993
dc.identifier.issn.pt_BR.fl_str_mv 2073-4441
dc.identifier.nrb.pt_BR.fl_str_mv 001126616
identifier_str_mv 2073-4441
001126616
url http://hdl.handle.net/10183/233993
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Water. Basel [Switzerland]. Vol. 13, n. 8 (Apr.-2 2021), [Article] 1008, 22 p.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/233993/2/001126616.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/233993/1/001126616.pdf
bitstream.checksum.fl_str_mv 4760893c3d2e039f0441f1c3611fbba7
445d5fe4105142e612747acd979017df
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1801225048598511616