A new skew integer valued time series process

Detalhes bibliográficos
Autor(a) principal: Bourguignon, Marcelo
Data de Publicação: 2016
Outros Autores: Vasconcellos, Klaus L.P.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRN
Texto Completo: https://repositorio.ufrn.br/handle/123456789/49701
http://dx.doi.org/10.1016/j.stamet.2016.01.002
Resumo: In this paper, we introduce a stationary first-order integer-valued autoregressive process with geometric–Poisson marginals. The new process allows negative values for the series. Several properties of the process are established. The unknown parameters of the model are estimated using the Yule–Walker method and the asymptotic properties of the estimator are considered. Some numerical results of the estimators are presented with a brief discussion. Possible application of the process is discussed through a real data example.
id UFRN_2d75378e7f54622ac880b7f901763df0
oai_identifier_str oai:https://repositorio.ufrn.br:123456789/49701
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Bourguignon, MarceloVasconcellos, Klaus L.P.2022-11-09T19:42:07Z2022-11-09T19:42:07Z2016-01BOURGUIGNON, Marcelo; VASCONCELLOS, Klaus L.P. . A new skew integer valued time series process. Statistical Methodology , v. 31, p. 8-19, 2016.Disponível em: http://www.sciencedirect.com/science/article/pii/S1572312716000046?via%3Dihub. Acesso em: 07 dez. 2017https://repositorio.ufrn.br/handle/123456789/49701http://dx.doi.org/10.1016/j.stamet.2016.01.002Statistical MethodologyINAR(1) processInteger-valued time seriesThinning operatorYule–Walker estimatorA new skew integer valued time series processinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleIn this paper, we introduce a stationary first-order integer-valued autoregressive process with geometric–Poisson marginals. The new process allows negative values for the series. Several properties of the process are established. The unknown parameters of the model are estimated using the Yule–Walker method and the asymptotic properties of the estimator are considered. Some numerical results of the estimators are presented with a brief discussion. Possible application of the process is discussed through a real data example.info:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/49701/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/497012022-11-09 16:42:42.366oai:https://repositorio.ufrn.br:123456789/49701Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2022-11-09T19:42:42Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.pt_BR.fl_str_mv A new skew integer valued time series process
title A new skew integer valued time series process
spellingShingle A new skew integer valued time series process
Bourguignon, Marcelo
INAR(1) process
Integer-valued time series
Thinning operator
Yule–Walker estimator
title_short A new skew integer valued time series process
title_full A new skew integer valued time series process
title_fullStr A new skew integer valued time series process
title_full_unstemmed A new skew integer valued time series process
title_sort A new skew integer valued time series process
author Bourguignon, Marcelo
author_facet Bourguignon, Marcelo
Vasconcellos, Klaus L.P.
author_role author
author2 Vasconcellos, Klaus L.P.
author2_role author
dc.contributor.author.fl_str_mv Bourguignon, Marcelo
Vasconcellos, Klaus L.P.
dc.subject.por.fl_str_mv INAR(1) process
Integer-valued time series
Thinning operator
Yule–Walker estimator
topic INAR(1) process
Integer-valued time series
Thinning operator
Yule–Walker estimator
description In this paper, we introduce a stationary first-order integer-valued autoregressive process with geometric–Poisson marginals. The new process allows negative values for the series. Several properties of the process are established. The unknown parameters of the model are estimated using the Yule–Walker method and the asymptotic properties of the estimator are considered. Some numerical results of the estimators are presented with a brief discussion. Possible application of the process is discussed through a real data example.
publishDate 2016
dc.date.issued.fl_str_mv 2016-01
dc.date.accessioned.fl_str_mv 2022-11-09T19:42:07Z
dc.date.available.fl_str_mv 2022-11-09T19:42:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv BOURGUIGNON, Marcelo; VASCONCELLOS, Klaus L.P. . A new skew integer valued time series process. Statistical Methodology , v. 31, p. 8-19, 2016.Disponível em: http://www.sciencedirect.com/science/article/pii/S1572312716000046?via%3Dihub. Acesso em: 07 dez. 2017
dc.identifier.uri.fl_str_mv https://repositorio.ufrn.br/handle/123456789/49701
dc.identifier.doi.none.fl_str_mv http://dx.doi.org/10.1016/j.stamet.2016.01.002
identifier_str_mv BOURGUIGNON, Marcelo; VASCONCELLOS, Klaus L.P. . A new skew integer valued time series process. Statistical Methodology , v. 31, p. 8-19, 2016.Disponível em: http://www.sciencedirect.com/science/article/pii/S1572312716000046?via%3Dihub. Acesso em: 07 dez. 2017
url https://repositorio.ufrn.br/handle/123456789/49701
http://dx.doi.org/10.1016/j.stamet.2016.01.002
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Statistical Methodology
publisher.none.fl_str_mv Statistical Methodology
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
bitstream.url.fl_str_mv https://repositorio.ufrn.br/bitstream/123456789/49701/2/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv
_version_ 1814832688647897088