A new skew integer valued time series process
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRN |
Texto Completo: | https://repositorio.ufrn.br/handle/123456789/49701 http://dx.doi.org/10.1016/j.stamet.2016.01.002 |
Resumo: | In this paper, we introduce a stationary first-order integer-valued autoregressive process with geometric–Poisson marginals. The new process allows negative values for the series. Several properties of the process are established. The unknown parameters of the model are estimated using the Yule–Walker method and the asymptotic properties of the estimator are considered. Some numerical results of the estimators are presented with a brief discussion. Possible application of the process is discussed through a real data example. |
id |
UFRN_2d75378e7f54622ac880b7f901763df0 |
---|---|
oai_identifier_str |
oai:https://repositorio.ufrn.br:123456789/49701 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Bourguignon, MarceloVasconcellos, Klaus L.P.2022-11-09T19:42:07Z2022-11-09T19:42:07Z2016-01BOURGUIGNON, Marcelo; VASCONCELLOS, Klaus L.P. . A new skew integer valued time series process. Statistical Methodology , v. 31, p. 8-19, 2016.Disponível em: http://www.sciencedirect.com/science/article/pii/S1572312716000046?via%3Dihub. Acesso em: 07 dez. 2017https://repositorio.ufrn.br/handle/123456789/49701http://dx.doi.org/10.1016/j.stamet.2016.01.002Statistical MethodologyINAR(1) processInteger-valued time seriesThinning operatorYule–Walker estimatorA new skew integer valued time series processinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleIn this paper, we introduce a stationary first-order integer-valued autoregressive process with geometric–Poisson marginals. The new process allows negative values for the series. Several properties of the process are established. The unknown parameters of the model are estimated using the Yule–Walker method and the asymptotic properties of the estimator are considered. Some numerical results of the estimators are presented with a brief discussion. Possible application of the process is discussed through a real data example.info:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRNLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufrn.br/bitstream/123456789/49701/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/497012022-11-09 16:42:42.366oai:https://repositorio.ufrn.br:123456789/49701Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório de PublicaçõesPUBhttp://repositorio.ufrn.br/oai/opendoar:2022-11-09T19:42:42Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.pt_BR.fl_str_mv |
A new skew integer valued time series process |
title |
A new skew integer valued time series process |
spellingShingle |
A new skew integer valued time series process Bourguignon, Marcelo INAR(1) process Integer-valued time series Thinning operator Yule–Walker estimator |
title_short |
A new skew integer valued time series process |
title_full |
A new skew integer valued time series process |
title_fullStr |
A new skew integer valued time series process |
title_full_unstemmed |
A new skew integer valued time series process |
title_sort |
A new skew integer valued time series process |
author |
Bourguignon, Marcelo |
author_facet |
Bourguignon, Marcelo Vasconcellos, Klaus L.P. |
author_role |
author |
author2 |
Vasconcellos, Klaus L.P. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Bourguignon, Marcelo Vasconcellos, Klaus L.P. |
dc.subject.por.fl_str_mv |
INAR(1) process Integer-valued time series Thinning operator Yule–Walker estimator |
topic |
INAR(1) process Integer-valued time series Thinning operator Yule–Walker estimator |
description |
In this paper, we introduce a stationary first-order integer-valued autoregressive process with geometric–Poisson marginals. The new process allows negative values for the series. Several properties of the process are established. The unknown parameters of the model are estimated using the Yule–Walker method and the asymptotic properties of the estimator are considered. Some numerical results of the estimators are presented with a brief discussion. Possible application of the process is discussed through a real data example. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-01 |
dc.date.accessioned.fl_str_mv |
2022-11-09T19:42:07Z |
dc.date.available.fl_str_mv |
2022-11-09T19:42:07Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
BOURGUIGNON, Marcelo; VASCONCELLOS, Klaus L.P. . A new skew integer valued time series process. Statistical Methodology , v. 31, p. 8-19, 2016.Disponível em: http://www.sciencedirect.com/science/article/pii/S1572312716000046?via%3Dihub. Acesso em: 07 dez. 2017 |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufrn.br/handle/123456789/49701 |
dc.identifier.doi.none.fl_str_mv |
http://dx.doi.org/10.1016/j.stamet.2016.01.002 |
identifier_str_mv |
BOURGUIGNON, Marcelo; VASCONCELLOS, Klaus L.P. . A new skew integer valued time series process. Statistical Methodology , v. 31, p. 8-19, 2016.Disponível em: http://www.sciencedirect.com/science/article/pii/S1572312716000046?via%3Dihub. Acesso em: 07 dez. 2017 |
url |
https://repositorio.ufrn.br/handle/123456789/49701 http://dx.doi.org/10.1016/j.stamet.2016.01.002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Statistical Methodology |
publisher.none.fl_str_mv |
Statistical Methodology |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
bitstream.url.fl_str_mv |
https://repositorio.ufrn.br/bitstream/123456789/49701/2/license.txt |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
|
_version_ |
1814832688647897088 |