Influência da alta pressão hidrostática na sacarificação do mosto cervejeiro

Detalhes bibliográficos
Autor(a) principal: Santos, Lígia Marcondes Rodrigues dos
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/10948
Resumo: A cerveja é a bebida alcoólica mais consumida no mundo, e o Brasil é o terceiro maior produtor. No processo de produção convencional, a mostura é a etapa que objetiva prioritariamente, promover gelatinização e hidrólise enzimática do amido pelas enzimas endógenas α e β amilases. A alta pressão hidrostática (APH) é capaz de promover a gelatinização de amido e ativação de enzimas e, desta maneira, a mostura demonstra ser uma etapa da fabricação de cerveja capaz de utilizar APH, no entanto há poucos estudos na literatura sobre esta aplicação. A adequação dessa tecnologia poderá propiciar esta etapa do processo sem necessidade de calor e com tempo reduzido, o que reverterá em aumento de produtividade e capacidade da indústria cervejeira. Desta maneira, o objetivo deste trabalho foi avaliar o efeito do processo da APH sobre a hidrólise do amido para formação de açúcares durante a mostura. Para isso, mostos (solução contendo água e malte – 4:1) foram tratados por alta pressão hidrostática (APH) a 300, 400 ou 500 MPa por 5, 10 ou 15 minutos e, como controle do experimento, a mesma solução foi tratada termicamente (TT: 1ª fase: 52°C / 20 min; 2ª fase: 72 °C / 25 min; 3ª fase: 78 °C / 5 min) . Posteriormente, procedeu-se análise do perfil de açúcares por cromatografia líquida de alta eficiência (HPLC), o teor de sólidos solúveis por densitometria e análise microscópica da gelatinização do amido. Como resultado, observou-se através da microscopia que houve diminuição na concentração de amido (indicativo de hidrólise) e um progressivo inchamento (indicativo de gelatinização) dos grânulos com o aumento da pressão, principalmente a 500 MPa. O resultado do teste iodo (que avalia presença de amido) corroborou com o resultado da microscopia, indicando a diminuição na concentração de amido a 500 MPa. O perfil de açúcar revelou cinco sacarídeos principais: sacarose, frutose, glicose, maltose e maltotriose. As concentrações de maltose, maltotriose e frutose dos mostos pressurizados foram similares às observadas no mosto TT quando nos níveis mais intensos (500 MPa / 5, 10 e 15 min). Frutose e glicose exibiram aumento de concentração na maioria dos tratamentos avaliados. O teor de sacarose e de sólidos solúveis foram inferiores ao observado no mosto TT em todos os mostos tratados por APH. Entre os níveis de APH avaliados, observou-se tendência de aumento da concentração de sólidos solúveis, maltose, maltotriose e glicose com o aumento da intensidade de APH. De maneira geral, o efeito da pressão alterou o teor de todos os açúcares, exceto sacarose. Já o tempo exerceu discreto efeito na concentração dos açúcares quando pressurizados em alguns níveis de pressão. O modelo matemático que melhor se ajustou aos dados experimentais dos teores de maltose, maltotriose e sólidos solúveis foi o de quarto grau, que exibiu forte influência do fator pressão sem dependência do fator tempo, corroborando com as outras análises deste estudo. Adicionalmente, análises de componentes principais exibiu explicação (CP1 + CP2) a 92 % de variância com formação de três clusters principais: mosto TT, mostos 500 MPa / 10 ou 15 min e demais mostos tratados por APH. Os resultados demostraram que a APH foi capaz de promover as alterações desejáveis no processo de mostura no que se refere aos efeitos de gelatinização e hidrólise com formação dos açúcares de interesse, principalmente nos níveis mais intensos (500 MPa) de pressão. Esse resultado sugere que a produção de mosto por APH é viável tecnicamente, podendo vir a proporcionar ganho expressivo de produtividade, uma vez que a APH demanda menos tempo (5 min contra 80 min do tratamento térmico) e há redução do consumo de energia.
id UFRRJ-1_7e2fc8423e461fbadb945734d2586875
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/10948
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Santos, Lígia Marcondes Rodrigues dosRosenthal, Amauri2504297840http://lattes.cnpq.br/1329532290735502Ferreira, Elisa Helena da Rocha7550633762http://lattes.cnpq.br/9247021829603724Nogueira, Luciana CardosoCarvalho, Carlos Wanderlei Piler de2409023789http://lattes.cnpq.br/70151553039326932023-12-22T01:44:59Z2023-12-22T01:44:59Z2016-11-28Santos, Lígia Marcondes Rodrigues dos. Influência da alta pressão hidrostática na sacarificação do mosto cervejeiro. 2016. [56 f.]. Dissertação (Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos) - Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ.https://rima.ufrrj.br/jspui/handle/20.500.14407/10948A cerveja é a bebida alcoólica mais consumida no mundo, e o Brasil é o terceiro maior produtor. No processo de produção convencional, a mostura é a etapa que objetiva prioritariamente, promover gelatinização e hidrólise enzimática do amido pelas enzimas endógenas α e β amilases. A alta pressão hidrostática (APH) é capaz de promover a gelatinização de amido e ativação de enzimas e, desta maneira, a mostura demonstra ser uma etapa da fabricação de cerveja capaz de utilizar APH, no entanto há poucos estudos na literatura sobre esta aplicação. A adequação dessa tecnologia poderá propiciar esta etapa do processo sem necessidade de calor e com tempo reduzido, o que reverterá em aumento de produtividade e capacidade da indústria cervejeira. Desta maneira, o objetivo deste trabalho foi avaliar o efeito do processo da APH sobre a hidrólise do amido para formação de açúcares durante a mostura. Para isso, mostos (solução contendo água e malte – 4:1) foram tratados por alta pressão hidrostática (APH) a 300, 400 ou 500 MPa por 5, 10 ou 15 minutos e, como controle do experimento, a mesma solução foi tratada termicamente (TT: 1ª fase: 52°C / 20 min; 2ª fase: 72 °C / 25 min; 3ª fase: 78 °C / 5 min) . Posteriormente, procedeu-se análise do perfil de açúcares por cromatografia líquida de alta eficiência (HPLC), o teor de sólidos solúveis por densitometria e análise microscópica da gelatinização do amido. Como resultado, observou-se através da microscopia que houve diminuição na concentração de amido (indicativo de hidrólise) e um progressivo inchamento (indicativo de gelatinização) dos grânulos com o aumento da pressão, principalmente a 500 MPa. O resultado do teste iodo (que avalia presença de amido) corroborou com o resultado da microscopia, indicando a diminuição na concentração de amido a 500 MPa. O perfil de açúcar revelou cinco sacarídeos principais: sacarose, frutose, glicose, maltose e maltotriose. As concentrações de maltose, maltotriose e frutose dos mostos pressurizados foram similares às observadas no mosto TT quando nos níveis mais intensos (500 MPa / 5, 10 e 15 min). Frutose e glicose exibiram aumento de concentração na maioria dos tratamentos avaliados. O teor de sacarose e de sólidos solúveis foram inferiores ao observado no mosto TT em todos os mostos tratados por APH. Entre os níveis de APH avaliados, observou-se tendência de aumento da concentração de sólidos solúveis, maltose, maltotriose e glicose com o aumento da intensidade de APH. De maneira geral, o efeito da pressão alterou o teor de todos os açúcares, exceto sacarose. Já o tempo exerceu discreto efeito na concentração dos açúcares quando pressurizados em alguns níveis de pressão. O modelo matemático que melhor se ajustou aos dados experimentais dos teores de maltose, maltotriose e sólidos solúveis foi o de quarto grau, que exibiu forte influência do fator pressão sem dependência do fator tempo, corroborando com as outras análises deste estudo. Adicionalmente, análises de componentes principais exibiu explicação (CP1 + CP2) a 92 % de variância com formação de três clusters principais: mosto TT, mostos 500 MPa / 10 ou 15 min e demais mostos tratados por APH. Os resultados demostraram que a APH foi capaz de promover as alterações desejáveis no processo de mostura no que se refere aos efeitos de gelatinização e hidrólise com formação dos açúcares de interesse, principalmente nos níveis mais intensos (500 MPa) de pressão. Esse resultado sugere que a produção de mosto por APH é viável tecnicamente, podendo vir a proporcionar ganho expressivo de produtividade, uma vez que a APH demanda menos tempo (5 min contra 80 min do tratamento térmico) e há redução do consumo de energia.Beer is the most consumed beverage in the world and Brazil is the third biggest producer just behind USA and China. It is an alcoholic beverage made from malted cereals, water, hops and yeast. To produce beer, water and malt are mixed and heated, what it is called the mashing step which aims to promote gelatinization and the starch hydrolyzation by the enzymes of the malt: α and β amylases. Since by using high hydrostatic pressure (HHP) it is possible to realize both processes (gelatinization and hydrolysis), mashing can use this technology without the need of heating and to raise productivity of the brewhouse. The aim of this study was to evaluate the use of HHP on starch hydrolysis and the sugar profile formed. For this, worts (water and malt solution – ratio 4:1) were treated with HHP in 300, 400 or 500 MPa for 5, 10 and 15 minutes, and as control sample, the same solution was treated with heat (1st step: 52°C / 20 min; 2nd step: 72 °C / 25 min; 3rd step: 78 °C / 5 min). After, it was made the sugar profile by high performance liquid chromatography (HPLC), soluble solids content by density and microscopic analysis of gelatinized starch. As results, it was possible to verify a decrease on starch concentration (indication of hydrolysis) and a progressive swelling (indication of gelatinization) of the granules, especially at 500 MPa. The iodine test, which assesses starch presence, showed the same results of microscopy analysis and, on both qualitative assessments, the pressure level was of great influence and only on the iodine test, time seems to have had any influence since it was observed a decrease on starch content as time increased at 500 MPa. The sugar profile revealed five main sugars in all worts: glucose, sucrose, fructose, maltose and maltotriose. The maltose, maltotriose and fructose’s contents of the pressurized worts were similar to the heat treatment (500 MPa / 5 – 15 min). Fructose and glucose exhibited and increase in most of the pressurizations. Sucrose and soluble solids contents of the pressurized samples were lower than the heated one. Among the pressure levels studied, there was a trend of increase on soluble solids, maltose, maltotriose and glucose’s content as the pressure was raised and generally, pressure influenced all sugar’s contents, except from sucrose. Time had a small effect on sugar’s content in some pressure levels. The variations observed to maltose, maltotriose and soluble solids were adjusted to mathematical models of fourth grade that exhibited a strong influence of pressure without dependence of the time effect. Additionally, the principal component analysis explained the variance with formation of three main clusters: heated wort, 500 MPa / 10 or 15 min wort and the other pressurized worts. The results showed that high hydrostatic pressure was able to promote desirable changes on mashing concerning gelatinization and hydrolysis with formation of desirable sugars, especially at 500 MPa. It suggests that it’s possible to produce wort by HHP providing productivity gains, once HHP takes less time (5 min against 80 min of usual heat process) and less energy consumption.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Ciência e Tecnologia de AlimentosUFRRJBrasilInstituto de TecnologiaBeerstarchhigh hydrostatic pressurecerveja, ,amidotratamento por alta pressãoEngenhariasInfluência da alta pressão hidrostática na sacarificação do mosto cervejeiroThe influence of high hydrostatic pressure in wort sacharificationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisREFERÊNCIAS BIBLIOGRÁFICAS ALLOSIO-OUARNIER, B. N.; QUEMENER, B.; BERTRAND, D.; BOIVIN, P.; CEDEX, V. Application of High Performance Anion Exchange Chromatography to the Study of Carbohydrate Changes in Barley During Malting. Exchange Organizational Behavior Teaching Journal, v. 106, n. 1, p. 45–52, 2000. AMORE, A.; FARACO, V. Enzymes for Food and Beverage Industries: Current Situation, Challenges and Perspectives. In: RAVISHANKAR, R. V. (Ed.). . Advances in Food Biotechnology. 1a edição ed. Oxford: Wiley Blackwell, 2015. p. 165. BAMFORTH, C. W. Nutritional aspects of beer—a review. Nutrition Research, v. 22, n. 1–2, p. 227–237, 2002. BAMFORTH, C. W. Barley and Malt Starch in Brewing : A General Review. MBAA TQ, v. 40, n. 2, p. 89–97, 2003. BAMFORTH, C. W. Current perspectives on the role of enzymes in brewing. Journal of Cereal Science, v. 50, n. 3, p. 353–357, 2009. BARBA, F. J.; ESTEVE, M. J.; FRÍGOLA, A. High Pressure Treatment Effect on Physicochemical and Nutritional Properties of Fluid Foods During Storage: A Review. Comprehensive Reviews in Food Science and Food Safety, v. 11, n. 3, p. 307–322, 2012. BEMILLER, J. N.; WHISTLER, R. L. (EDS.). Starch Chemistry and Technology. 3rd Edition. 3a edição ed. Amsterdam: Academic Press, 2009. v. 1 BOURQUE, C. Fermentability of Canadian Two-Row Barley Malt: Wort Turbidity, Density, and Sugar Content as Measures of Fermentation Potential.Journal of Chemical Information and Modeling, 2013. BRANDAM, C.; MEYER, X. M.; PROTH, J.; STREHAIANO, P.; PINGAUD, H. An original kinetic model for the enzymatic hydrolysis of starch during mashing. Biochemical Engineering Journal, v. 13, n. 1, p. 43–52, 2003. BRASIL. Produção de cervejas e refrigerantesBrasília: Receita Federal do BrasilSICOBE - Sistema de Controle de Produção de Bebidas, , 2015. BRIGGS, D. E. Malt Modification — A Century Of Evolving Views. J. Inst. Brew., v. 108, n. 4, p. 395–405, 2002. BRIGGS, D. E.; BOULTON, C. A.; BROOKES, P. A.; STEVENS, R. Brewing Science and Practice. 1. ed. Nova Iorque: CRC Press LCC, 2004. BUCKOW, R.; WEISS, U.; HEINZ, V.; KNORR, D. Stability and Catalitic Activity of Alpha-Amylase from Barley Malt at Different Pressure-Temperature Conditions. Biotechnology and bioengineering, v. 97, n. 1, p. 1–11, 2007. BUCKOW, R.; HEINZ, V.; KNORR, D. Effect of high hydrostatic pressure-temperature combinations on the activity of beta-glucanase from barley malt. Journal of the Institute of Brewing, v. 111, n. 3, p. 282–289, 2005. BUTTIMER, E. T.; BRIGGS, D. E. Characterization of solubilized forms of bound ß-amylase released by various agents. Journal of the Institute of Brewing, v. 106, n. 2, p. 71–82, 2000. 51 BUTZ, P.; GARCÍA, A. F.; LINDAUER, R.; DIETERICH, S.; BOGNAR, A.; TAUSCHER, B. Influence of ultra high pressure processing on fruit and vegetable products. Journal of Food Engineering, v. 56, p. 233–236, 2003. BUZRUL, S. A suitable model of microbial survival curves for beer pasteurization. LWT - Food Science and Technology, v. 40, n. 8, p. 1330–1336, 2007. BUZRUL, S. High hydrostatic pressure treatment of beer and wine: A review. Innovative Food Science and Emerging Technologies, v. 13, n. JANUARY, p. 1–12, 2012. BUZRUL, S.; ALPAS, H.; BOZOGLU, F. Effect of high hydrostatic pressure on quality parameters of lager beer. Journal of the Science of Food and Agriculture, v. 85, n. 10, p. 1672–1676, 2005a. BUZRUL, S.; ALPAS, H.; BOZOGLU, F. Effects of high hydrostatic pressure on shelf life of lager beer. European Food Research and Technology, v. 220, n. 5–6, p. 615–618, 2005b. CAMPUS, M. High Pressure Processing of Meat, Meat Products and Seafood. Food Engineering Reviews, v. 2, n. 4, p. 256–273, 2010. CASTELLARI, M.; ARFELLI, G.; RIPONI, C.; CARPI, G.; AMATI, A. High hydrostatic pressure treatments for beer stabilization. Journal of Food Science, v. 65, n. 6, p. 974–977, 2000. CERVBRASIL - ASSOCIAÇÃO BRASILEIRA DA INDÚSTRIA DA CERVEJA. Anuário 2015. Disponível em: <http://cervbrasil.org.br/arquivos/anuario_cb_2015_web.pdf>. Acesso em: 28 jul. 2016. CHEFTEL, J. C. Review : High-pressure, microbial inactivation and food preservation / Revisión: Alta-presión, inactivación microbiológica y conservación de alimentos. Food Science and Technology International, v. 1, n. 2–3, p. 75–90, 1995. CRISTEA, S. P.; MAZAEDA, R.; DE PRADA, C. Optimal control of beer filtration process. IFAC Proceedings Volumes (IFAC-PapersOnline), v. 10, n. PART 1, p. 762–767, 2013. DONADINI, G.; FUMI, M. D.; KORDIALIK-BOGACKA, E.; MAGGI, L.; LAMBRI, M.; SKOKAI, P. Consumer interest in specialty beers in three European markets. Food Research International, v. 85, p. 301–314, 2016. DOUZALS, J. P.; MARECHAL, P. A.; COQUILLE, J. C.; GERVAIS, P. Microscopic Study of Starch Gelatinization under High Hydrostatic. J. Agric. Food Chem, v. 4, p. 1403–1408, 1996. DURAND, G. A.; CORAZZA, M. L.; BLANCO, A. M.; CORAZZA, F. C. Dynamic optimization of the mashing process. Food Control, v. 20, n. 12, p. 1127–1140, 2009. EISENMENGER, M. J.; REYES-DE-CORCUERA, J. I. High pressure enhancement of enzymes: A review. Enzyme and Microbial Technology, v. 45, n. 5, p. 331–347, 2009. ESSLINGE, H. M. (ED.). Handbook of Brewing. weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2009. EVANS, D.; SHEEHAN, M. C.; STEWART, D. C. Impact of Malt Derived Proteins on Beer Foam Quality. Part II: The Influence of Malt Foam positive Proteins and Non‐starch Polysaccharides on Beer Foam Quality. Journal of the Institute of Brewing, v. 105, n. 2, p. 171–177, 1999. FARKAS, D. F.; HOOVER, D. G. High pressure processing. Journal of Food Science, v. 65, n. 8 SPEC. SUPPL., p. 47–64, 2000. FARR, D. High pressure technology in the food industry. Trends in Food Science & Technology, v. 1, p. 14–16, 1990. FEILNER, R.; JACOB, F. F. Improving resistance to aging and increasing haze stability in southern German wheat beer through process optimization. Monatsschrift für Brauwissenschaft, v. 68, p. 58, 52 2015. FISCHER, S.; SCHÖBERL, H.; RUSS, W. MEYER-PITTROFF, R. Auswirkungen von hydrostatischem Hochdruck auf den Brauprozeß und das Bier. Monatsschrift für Brauwissenschaft, v. 51, n. 7–8, p. 120–123, 1998. FISCHER, S.; RUSS, W.; BUCKOW, R.; HEINZ, V.; ULMER, H.; BEHR, J.; KNOOR, D.; VOGEL, R. F. Effects of hydrostatic high pressure on micro- biological and technological characteristics of beer. Monatsschrift für Brauwissenschaft, June, p. 90–99, 2006. Fluxograma de produção de cerveja. Disponível em: <http://www.dortmund.com.br/fabricacao.php>. Acesso em: 1 out. 2016. FRANCHI, M. A.; TRIBST, A. A. L.; CRISTIANINI, M. Inactivation of Lactobacillus brevis in beer utilizing a combination of high-pressure homogenization and lysozyme treatment. Journal of the Institute of Brewing, v. 117, n. 4, p. 634–638, 2011a. FRANCHI, M. A.; TRIBST, A. A. L.; CRISTIANINI, M. Effects of High Pressure Homogenization on Beer Quality Attributes. Journal Of The Institute Of Brewing, v. 117, n. 2, p. 195–198, 2011b. GAETANO, G. DE; CONSTANZO, S.; CASTELNUOVO, A. DI; BADIMON, L.; BEJKO, D. Effects of moderate beer consumption on health and disease : A consensus document. Nutrition, Metabolism and Cardiovascular Diseases, v. 26, n. 6, p. 443–467, 2016. GÄNZLE, M. G.; ULMER, H. M.; VOGEL, R. F. High pressure inactivation of Lactobacillus plantarum in a model beer system. Journal of Food Science, v. 66, p. 1174–1181, 2001. GOMES, M. R. A.; CLARK, R.; LEDWARD, D. A. Effects of high pressure on amylases and starch in wheat and barley flours. Food Chemistry, v. 63, n. 3, p. 363–372, 1998. GUPTA, M.; ABU-GHANNAM, N.; GALLAGHAR, E. Barley for brewing: Characteristic changes during malting, brewing and applications of its by-products. Comprehensive Reviews in Food Science and Food Safety, v. 9, n. 3, p. 318–328, 2010. HAGER, A.; TAYLOR, J. P.; WATERS, D. M.; ARENDT, E. K. Gluten free beer-A review. Trends in Food Science & Technology, v. 36, p. 44–54, 2014. HARA, A.; NAGAHAMA, G.; OHBAYASHI, A.; HAYASHI, R. Effects of high pressure on inactivation of enzymes and microorganisms in non-pasteurized rice wine (Namazake). Journal of the Agricultural Chemical Society of Japan (Japan), 1990. HEINZ, V.; BUCKOW, R.; KNORR, D. Catalytic Activity of β-Amylase from Barley in Different Pressure/ Temperature Domains. Biotechnol. Prog., v. 21, p. 1632–1638, 2005. HEITMANN, M.; ZANNINI, E.; ARENDT, E. K. Impact of different beer yeasts on wheat dough and bread quality parameters. Journal of Cereal Science, v. 63, p. 49–56, 2015. HITE, B. H. The effect of pressure in the preservation of milk: a preliminary report. West Virginia Agricultural Experiment Station, v. 58, 1899. HOLTZ, C.; GASTL, M.; BECKER, T. Turbidity potentials of single long-chain fatty acids and gelatinised starch in synthetic lautering wort. International Journal of Food Science and Technology, v. 50, n. 4, p. 906–912, 2015. HU, S.; DONG, J.; FAN, W.; YU, J.; YIN, H.; HUANG, S.; LIU, J.; HUANG, S.; ZHANG, X. The influence of proteolytic and cytolytic enzymes on starch degradation during mashing. Journal of the Institute of Brewing, v. 120, n. 4, p. 379–384, 2014. HUANG, H. W.; HSU, C. P. YANG, B. B.; WANG, C. Y. Potential utility of high-pressure processing to address the risk of food allergen concerns. Comprehensive Reviews in Food Science and Food Safety, v. 13, n. 1, p. 78–90, 2014. 53 IMBERTY, A.; BULÉON, A.; TRAN, V.; PÉREZ, S. Recent Advances in Knowledge of Starch Structure. Starch - Stärke, v. 43, n. 10, p. 375–384, 1991. JENKINS, P. J.; DONALD, A M. Gelatinisation of starch: a combined SAXS/WAXS/SANS study. Carbohydrate Research, v. 308, p. 133–147, 1998. KALICHEVSKY, M. T.; KNORR, D.; LILLFORD, P. J. Potential food applications of high-pressure effects on ice-water transitions. Trends in Food Science Technology, v. 6, n. 8, p. 253–259, 1995. KING, B. M.; DUINEVELD, C. A. . Changes in bitterness as beer ages naturally. Food Quality and Preference, v. 10, n. 4–5, p. 315–324, 1999. KNORR, D.; SCHLUETER, O.; HEINZ, V. Impact of high hydrostatic pressure on phase transitions of foodsFood technology (USA), , 1998. KRAFTCHICK, J. F.; BYRD, E. T.; CANZIANI, B. GLADWELL, N. J. Understanding beer tourist motivation. Tourism Management Perspectives, v. 12, p. 41–47, 2014. KÜHBECK, F.; BACK, W.; KROTTENTHALER, M. Influence of Lauter Turbidity on Wort Composition, Fermentation Performance and Beer Quality - A Review. Journal of the Institute of Brewing, v. 112, n. 3, p. 215–221, 2006. KUNUGI, S. Enzyme Reactions under High Pressure and Their Applications. Enzyme Engineering XI, v. 672, n. 1, p. 293–304, 1992. KUNZE, W. Technology Brewing and Malting. 5. ed. Berlim: VLB, 2014. LACROIX, N.; FLISS, I.; MAKHLOUF, J. Inactivation of pectin methylesterase and stabilization of opalescence in orange juice by dynamic high pressure. Food Research International, v. 38, p. 569–576, 2005. LAURO, M.; POUTANEN, K.; FORSSELL, P. Effect of partial gelatinization and lipid addition on α-amylolysis of barley starch granules. Cereal Chemistry, v. 77, n. 5, p. 595–601, 2000. LIMA, L.; BRANDÃO, T.; LIMA, N.; TEIXEIRA, J. A. Comparing the Impact of Environmental Factors During Very High Gravity Brewing Fermentations. J. Inst. Brew., v. 117, n. 3, p. 359–367, 2011. LIU, F.; LI, R.; WANG, Y.; BI, X.; LIAO, X. Effects of high hydrostatic pressure and high-temperature short-time on mango nectars: Changes in microorganisms, acid invertase, 5- hydroxymethylfurfural, sugars, viscosity, and cloud. Innovative Food Science and Emerging Technologies, v. 22, p. 22–30, 2014. LIU, Y.; SELOMULYO, V. O.; ZHOU, W. Effect of high pressure on some physicochemical properties of several native starches. Journal of Food Engineering, v. 88, n. 1, p. 126–136, 2008. LODOLO, E. J.; KOCK, J. L. F.; AXCELL, B. C.; BROOKS, M. The yeast Saccharomyces cerevisiae - The main character in beer brewing. FEMS Yeast Research, v. 8, n. 7, p. 1018–1036, 2008. MACGREGOR, A W.; BAZIN, S. L.; MACRI, L. J.; BABB, J. C. Modelling the Contribution of Alpha-Amylase , Beta-Amylase and Limit Dextrinase to Starch Degradation During Mashing. Journal of Cereal Science, v. 29, p. 161–169, 1999. MENESES, F. J.; HENSCHKE, P. A.; JIRANEK, V. A survey of industrial strains of saccharomyces cerevisiae reveals numerous altered patterns of maltose and sucrose utilisation. Journal Of The Institute Of Brewing, v. 108, n. 3, p. 310–321, 2002. MERTENS, B.; DEPLACE, G. Engineering aspects of high pressure technology in the food industryFood technology (USA), , 1993. MILLAN-TESTA, C. E.; MENDEZ-MONTEALVO, M. G.; OTTENHOF, M. A.; FARHAT, I. A.; 54 BELLO-PÉREZ, L. A. Determination of the molecular and structural characteristics of okenia, mango, and banana starches. Journal of Agricultural and Food Chemistry, v. 53, n. 3, p. 495–501, 2005. MONTANARI, L.; FLORIDI, S.; MARCONI, O.; TIRONZELLI, M.; FANTOZZI, P. Effect of mashing procedures on brewing. European Food Research and Technology, v. 221, n. 1–2, p. 175–179, 2005. MOZHAEV, V. V.; LANGE, R.; KUDRYASHOVA, E. V.; BALNY, C. Application of high hydrostatic pressure for increasing activity and stability of enzymes. Biotechnology and bioengineering, v. 52, n. 2, p. 320–331, 1996. MÚJICA-PAZ, H.; VALDEZ-FRAGOSO, A.; SAMSON, C. T.; WELTI-CHANES, J.; TORRES, A. High-Pressure Processing Technologies for the Pasteurization and Sterilization of Foods. Food and Bioprocess Technology, v. 4, n. 6, p. 969–985, 2011. MULLER, R. the Effects of Mashing Temperature and Mash Thickness on Wort Carbohydrate Composition. Journal of the Institute of Brewing, v. 97, n. 2, p. 85–92, 1991. MULLER, R. A mathematical model of the formation of fermentable sugars from starch hydrolysis during high-temperature mashing. Enzyme and Microbial Technology, v. 27, n. 3–5, p. 337–344, 2000. MURALIKRISHNA, G.; NIRMALA, M. Cereal α-amylases - An overview. Carbohydrate Polymers, v. 60, n. 2, p. 163–173, 2005. MUSTER-SLAWITSCH, B.; WEISS, W.; SCHNITZER, H.; BRUNNER, C. The green brewery concept - Energy efficiency and the use of renewable energy sources in breweries. Applied Thermal Engineering, v. 31, n. 13, p. 2123–2134, 2011. NOEL MARIE-OLIVE, M.; ATHES, V.; COMBES, D. Combined effects of pressure and temperature on enzyme stability. International Journal of High Pressure Research, v. 19, n. 1–6, p. 317–322, 2000. NORTHROP, D. B. Effects of high pressure on enzymatic activity. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, v. 1595, n. 1–2, p. 71–79, 2002. OLAJIRE, A. A. The brewing industry and environmental challenges. Journal of Cleaner Production, p. 1–21, 2012. OSUMI, M.; SATO, M.; KOBORI, H.; FENG, Z. H.; ISHIJIMA, S. A.; HAMADA, K.; SHIMADA, S. Morphological effects of pressure stress on yeasts. Progress in Biotechnology, v. 13, p. 37–46, 1996. PADIERNOS, C. A.; LIM, S-Y.; SWANSON, B. G.; ROSS, C. F.; CLARK, S. High hydrostatic pressure modification of whey protein concentrate for use in low-fat whipping cream improves foaming properties. Journal of dairy science, v. 92, n. 7, p. 3049–56, 2009. PÁTKOVÁ, J.; SMOGROVICOVÁ, D.; BAFRNCOVÁ, P.; DÖMÉNY, Z. Changes in the yeast metabolism at very high-gravity wort fermentation. Folia microbiologica, v. 45, n. 4, p. 335–338, 2000. PATTERSON, M. F. Microbiology of pressure-treated foods. Journal of Applied Microbiology, v. 98, n. 6, p. 1400–1409, 2005. PEI-LING, L.; XIAO-SONG, H.; QUN, S. Effect of high hydrostatic pressure on starches: A review. Starch - Stärke, v. 62, p. 615–628, 2010. PÉREZ-LAMELA, C.; LEDWARD, D. A.; REED, R. J. R.; SIMAL-GÁNDARA, J. Application of high-pressure treatment in the mashing of white malt in the elaboration process of beer. Journal of the Science of Food and Agriculture, v. 82, n. October 2001, p. 258–262, 2002. 55 PÉREZ-LAMELA, C.; REED, R. J. R.; SIMAL-GÁNDARA, J. High pressure application to wort and beer. Deutsche Lebensmittel-Rundschau, v. 100, n. 2, p. 53–56, 2004. PFLANZER, S.; CRUZ, A.; HATANAKA, C.; GIGANTE, M. Revisão : Efeito do processamento por alta pressão hidrostática nas características físico-químicas , microbiológicas e nutricionais do leite. Brazilian Journal of Food Technology, v. 11, n. 4, p. 241–251, 2008. PIDDOCKE, M. P.; KREISZ, S.; HELDT-HANSEN, H. P.; NIELSEN, K. F.; OLSSON, L. Physiological characterization of brewer’s yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts. Applied Microbiology and Biotechnology, v. 84, n. 3, p. 453–464, 2009. PREEDY, V. R. (ED.). Beer in Health and Disease Prevention. California: Press, Academic, 2011. PUTSEYS, J. A.; LAMBERTS, L.; DELCOUR, J. A. Amylose-inclusion complexes: Formation, identity and physico-chemical properties. Journal of Cereal Science, v. 51, n. 3, p. 238–247, 2010. RAKETE, S.; KLAUS, A.; GLOMB, M. A. Investigations on the maillard reaction of dextrins during aging of pilsner type beer. Journal of Agricultural and Food Chemistry, v. 62, n. 40, p. 9876–9884, 2014. RASTOGI, N. K. Recent Developments in High Pressure Processing of Foods. 1a edição ed. Nova Iorque: Springer, 2013. RENDUELES, E.; OMER, M. K.; ALVSEIKE, O.; ALONSO-CALLEJA, C.; CAPITA, R.; PRIETO, M. Microbiological food safety assessment of high hydrostatic pressure processing: A review. LWT - Food Science and Technology, v. 44, n. 5, p. 1251–1260, 2011. SCHNEIDERBANGER, H.; KOOB, J.; POLTINGER, S.; JACOB, F.; HUTZLER, M. Gene expression in wheat beer yeast strains and the synthesis of acetate esters. Journal of the Institute of Brewing, v. 122, n. 3, p. 403–411, 2016. SEBRAE. Potencial de consumo de cervejas no Brasil. 2014 Disponível em: <http://segmentos.sebrae2014.com.br/agronegocio/potencial-de-consumo-de-cervejas-no-brasil/>. Acesso em: 3 nov. 2014. SEBRAE. Relatório de Inteligência sobre Cervejas Artesanais. 2015 Disponível em: <https://www.sebraeinteligenciasetorial.com.br/produtos/relatorios-de-inteligencia/cervejas-artesanais/55c4ad3614d0c01d007ffeae#download>. Acesso em: 28 jul. 2016. SELMI, B.; MARION, D.; PERRIER CORNET, J. M.; DOUZALS, J. P.; GERVAIS, P. Amyloglucosidase hydrolysis of high-pressure and thermally gelatinized corn and wheat starches. Journal of Agricultural and Food Chemistry, v. 48, n. 7, p. 2629–2633, 2000. SHUMIN, H.; YU, J.; DONG, J.; EVANS, D.; LIU, J.; HUANG, S.; HUANG, S.; FAN, W.; YIN, H.; LI, M. Relationship between levels of diastatic power enzymes and wort sugar production from different barley cultivars during the commercial mashing process of brewing. Starch - Stärke, v. 66, p. 615–623, 2014. SIEBERT, K. J.; CARRASCO, A.; LYNN, P. Y. Formation of Protein - Polyphenol Haze in Beverages. Journal of Agricultural and Food Chemistry …, v. 44, n. 5, p. 1997–2005, 1996. SILVA, F.; FERREIRA, I. M. P. L. V. O.; TEIXEIRA, N. Polipeptídeos e proteínas com influência na qualidade da espuma da cerveja e métodos analíticos utilizados no seu estudo. Quimica Nova, v. 29, n. 6, p. 1326–1331, 2006. SMELT, J. P. P. . Recent advances in the microbiology of high pressure processing. Trends in Food Science & Technology, v. 9, n. 4, p. 152–158, 1998. STEVENS, J. F.; PAGE, J. E. Xanthohumol and related prenylflavonoids from hops and beer: To your good health! Phytochemistry, v. 65, n. 10, p. 1317–1330, 2004. 56 STOLT, M.; OINONEN, S.; AUTIO, K. Effect of high pressure on the physical properties of barley starch. Innovative Food Science & Emerging Technologies, v. 1, n. 3, p. 167–175, 2000. TAMAOKA, T.; ITOH, N.; HAYASHI, R. High Pressure Effect on Maillard Reaction. Agricultural and biological chemistry, v. 55, n. 8, p. 2071–2074, 1991. TANG, H.; MITSUNAGA, T.; KAWAMURA, Y. Relationship between functionality and structure in barley starches. Carbohydrate Polymers, v. 57, n. 2, p. 145–152, 2004. TESTER, R. F.; KARKALAS, J.; QI, X. Starch - Composition, fine structure and architecture. Journal of Cereal Science, v. 39, n. 2, p. 151–165, 2004. TRIBST, A. A. L.; AUGUSTO, P. E. D.; CRISTIANINI, M. Multi-pass high pressure homogenization of commercial enzymes : Effect on the activities of glucose oxidase , neutral protease and amyloglucosidase at different temperatures. Innovative Food Science and Emerging Technologies, v. 18, p. 83–88, 2013. TRIBST, A. A. L.; CRISTIANINI, M. Changes in commercial glucose oxidase activity by high pressure homogenization. Innovative Food Science and Emerging Technologies, v. 16, p. 355–360, 2012. ULMER, H. M.; HERBERHOLD, H.; FAHSEL, S.; GÄNZLE, M. G.; WINTER, R.; VOGEL, R. F. Effects of pressure-induced membrane phase transitions on inactivation of HorA, an ATP-dependent multidrug resistance transporter, in Lactobacillus plantarum. Applied and Environmental Microbiology, v. 68, n. 3, p. 1088–1095, 2002. ULMER, H. M.; GÄNZLE, M. G.; VOGEL, R. F. Effects of High Pressure on Survival and Metabolic Activity of Lactobacillus plantarum TMW1. 460. Applied and Environmental Microbiology, v. 66, n. 9, p. 3966–3973, 2000. VASANTHAN, T.; BHATTY, R. S. Physicochemical properties of small- and large-granule starches of waxy, regular, and high-amylose barleysCereal Chemistry, 1996. VRIESEKOOP, F.; RATHBAND, A.; MACKINLAY, J.; BRYCE, J. H. The evolution of dextrins during the mashing and fermentation of all-malt Whisky production. Journal of the Institute of Brewing, v. 116, n. 3, p. 230–238, 2010. WALTERS, M. T.; HAESMAN, A. P.; HUGHES, P. S. Comparison of (+)-catechin and ferulic acid as natural antioxidants and their impact on beer flavour stability. Part 2: Extended storage trials. Journal of the American Society of Brewing Chemists, v. 55, n. 3, p. 91–98, 1997. WIEME, A. D.; SPITAELS, F.; AERTS, M.; DE BRUYNE, K.; VAN LANDSCHOOT, A.; VANDAMME, P. Identification of beer-spoilage bacteria using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. International Journal of Food Microbiology, v. 185, p. 41–50, 2014. WILSON, D. R.; DABROWSKI, L.; STRINGER, S.; MOEZELAAR, R.; BROCKLEHURST, T. F. High pressure in combination with elevated temperature as a method for the sterilisation of food. Trends in Food Science and Technology, v. 19, n. 6, p. 289–299, 2008. WRIGHT, C. A.; BRUHN, C. M.; HEYMANN, H.; BAMFORTH, C. W. Beer and wine consumers’ perceptions of the nutritional value of alcoholic and nonalcoholic beverages. Journal of Food Science, v. 73, n. 1, 2008. YOSHIMOTO, Y.; TASHIRO, J.; TAKENOUCHI, T.; TAKEDA, Y. Molecular Structure and Some Physicochemical Properties of High-Amylose Barley Starches. Cereal Chemistry, v. 77, n. 3, p. 279–285, 2000.https://tede.ufrrj.br/retrieve/3929/2016%20-%20L%c3%adgia%20Marcondes%20Rodrigues%20dos%20Santos.pdf.jpghttps://tede.ufrrj.br/retrieve/18318/2016%20-%20L%c3%adgia%20Marcondes%20Rodrigues%20dos%20Santos.pdf.jpghttps://tede.ufrrj.br/retrieve/24638/2016%20-%20L%c3%adgia%20Marcondes%20Rodrigues%20dos%20Santos.pdf.jpghttps://tede.ufrrj.br/retrieve/31033/2016%20-%20L%c3%adgia%20Marcondes%20Rodrigues%20dos%20Santos.pdf.jpghttps://tede.ufrrj.br/retrieve/37379/2016%20-%20L%c3%adgia%20Marcondes%20Rodrigues%20dos%20Santos.pdf.jpghttps://tede.ufrrj.br/retrieve/43771/2016%20-%20L%c3%adgia%20Marcondes%20Rodrigues%20dos%20Santos.pdf.jpghttps://tede.ufrrj.br/retrieve/50163/2016%20-%20L%c3%adgia%20Marcondes%20Rodrigues%20dos%20Santos.pdf.jpghttps://tede.ufrrj.br/retrieve/56583/2016%20-%20L%c3%adgia%20Marcondes%20Rodrigues%20dos%20Santos.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/1882Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2017-07-17T15:09:58Z No. of bitstreams: 1 2016 - Lígia Marcondes Rodrigues dos Santos.pdf: 1928089 bytes, checksum: 74cdeac055ec3629545f632b08dd75c4 (MD5)Made available in DSpace on 2017-07-17T15:09:58Z (GMT). No. of bitstreams: 1 2016 - Lígia Marcondes Rodrigues dos Santos.pdf: 1928089 bytes, checksum: 74cdeac055ec3629545f632b08dd75c4 (MD5) Previous issue date: 2016-11-28info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2016 - Lígia Marcondes Rodrigues dos Santos.pdf.jpgGenerated Thumbnailimage/jpeg2104https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10948/1/2016%20-%20L%c3%adgia%20Marcondes%20Rodrigues%20dos%20Santos.pdf.jpg5daa3f8419c7b424de991517f98719d8MD51TEXT2016 - Lígia Marcondes Rodrigues dos Santos.pdf.txtExtracted Texttext/plain172294https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10948/2/2016%20-%20L%c3%adgia%20Marcondes%20Rodrigues%20dos%20Santos.pdf.txt3d9638f31524e14c20863ad953b03658MD52ORIGINAL2016 - Lígia Marcondes Rodrigues dos Santos.pdf2016 - Lígia Marcondes Rodrigues dos Santosapplication/pdf1928089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10948/3/2016%20-%20L%c3%adgia%20Marcondes%20Rodrigues%20dos%20Santos.pdf74cdeac055ec3629545f632b08dd75c4MD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10948/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/109482023-12-21 22:44:59.27oai:rima.ufrrj.br:20.500.14407/10948Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-22T01:44:59Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Influência da alta pressão hidrostática na sacarificação do mosto cervejeiro
dc.title.alternative.eng.fl_str_mv The influence of high hydrostatic pressure in wort sacharification
title Influência da alta pressão hidrostática na sacarificação do mosto cervejeiro
spellingShingle Influência da alta pressão hidrostática na sacarificação do mosto cervejeiro
Santos, Lígia Marcondes Rodrigues dos
Beer
starch
high hydrostatic pressure
cerveja, ,
amido
tratamento por alta pressão
Engenharias
title_short Influência da alta pressão hidrostática na sacarificação do mosto cervejeiro
title_full Influência da alta pressão hidrostática na sacarificação do mosto cervejeiro
title_fullStr Influência da alta pressão hidrostática na sacarificação do mosto cervejeiro
title_full_unstemmed Influência da alta pressão hidrostática na sacarificação do mosto cervejeiro
title_sort Influência da alta pressão hidrostática na sacarificação do mosto cervejeiro
author Santos, Lígia Marcondes Rodrigues dos
author_facet Santos, Lígia Marcondes Rodrigues dos
author_role author
dc.contributor.author.fl_str_mv Santos, Lígia Marcondes Rodrigues dos
dc.contributor.advisor1.fl_str_mv Rosenthal, Amauri
dc.contributor.advisor1ID.fl_str_mv 2504297840
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1329532290735502
dc.contributor.advisor-co1.fl_str_mv Ferreira, Elisa Helena da Rocha
dc.contributor.advisor-co1ID.fl_str_mv 7550633762
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/9247021829603724
dc.contributor.referee1.fl_str_mv Nogueira, Luciana Cardoso
dc.contributor.referee2.fl_str_mv Carvalho, Carlos Wanderlei Piler de
dc.contributor.authorID.fl_str_mv 2409023789
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7015155303932693
contributor_str_mv Rosenthal, Amauri
Ferreira, Elisa Helena da Rocha
Nogueira, Luciana Cardoso
Carvalho, Carlos Wanderlei Piler de
dc.subject.eng.fl_str_mv Beer
starch
high hydrostatic pressure
topic Beer
starch
high hydrostatic pressure
cerveja, ,
amido
tratamento por alta pressão
Engenharias
dc.subject.por.fl_str_mv cerveja, ,
amido
tratamento por alta pressão
dc.subject.cnpq.fl_str_mv Engenharias
description A cerveja é a bebida alcoólica mais consumida no mundo, e o Brasil é o terceiro maior produtor. No processo de produção convencional, a mostura é a etapa que objetiva prioritariamente, promover gelatinização e hidrólise enzimática do amido pelas enzimas endógenas α e β amilases. A alta pressão hidrostática (APH) é capaz de promover a gelatinização de amido e ativação de enzimas e, desta maneira, a mostura demonstra ser uma etapa da fabricação de cerveja capaz de utilizar APH, no entanto há poucos estudos na literatura sobre esta aplicação. A adequação dessa tecnologia poderá propiciar esta etapa do processo sem necessidade de calor e com tempo reduzido, o que reverterá em aumento de produtividade e capacidade da indústria cervejeira. Desta maneira, o objetivo deste trabalho foi avaliar o efeito do processo da APH sobre a hidrólise do amido para formação de açúcares durante a mostura. Para isso, mostos (solução contendo água e malte – 4:1) foram tratados por alta pressão hidrostática (APH) a 300, 400 ou 500 MPa por 5, 10 ou 15 minutos e, como controle do experimento, a mesma solução foi tratada termicamente (TT: 1ª fase: 52°C / 20 min; 2ª fase: 72 °C / 25 min; 3ª fase: 78 °C / 5 min) . Posteriormente, procedeu-se análise do perfil de açúcares por cromatografia líquida de alta eficiência (HPLC), o teor de sólidos solúveis por densitometria e análise microscópica da gelatinização do amido. Como resultado, observou-se através da microscopia que houve diminuição na concentração de amido (indicativo de hidrólise) e um progressivo inchamento (indicativo de gelatinização) dos grânulos com o aumento da pressão, principalmente a 500 MPa. O resultado do teste iodo (que avalia presença de amido) corroborou com o resultado da microscopia, indicando a diminuição na concentração de amido a 500 MPa. O perfil de açúcar revelou cinco sacarídeos principais: sacarose, frutose, glicose, maltose e maltotriose. As concentrações de maltose, maltotriose e frutose dos mostos pressurizados foram similares às observadas no mosto TT quando nos níveis mais intensos (500 MPa / 5, 10 e 15 min). Frutose e glicose exibiram aumento de concentração na maioria dos tratamentos avaliados. O teor de sacarose e de sólidos solúveis foram inferiores ao observado no mosto TT em todos os mostos tratados por APH. Entre os níveis de APH avaliados, observou-se tendência de aumento da concentração de sólidos solúveis, maltose, maltotriose e glicose com o aumento da intensidade de APH. De maneira geral, o efeito da pressão alterou o teor de todos os açúcares, exceto sacarose. Já o tempo exerceu discreto efeito na concentração dos açúcares quando pressurizados em alguns níveis de pressão. O modelo matemático que melhor se ajustou aos dados experimentais dos teores de maltose, maltotriose e sólidos solúveis foi o de quarto grau, que exibiu forte influência do fator pressão sem dependência do fator tempo, corroborando com as outras análises deste estudo. Adicionalmente, análises de componentes principais exibiu explicação (CP1 + CP2) a 92 % de variância com formação de três clusters principais: mosto TT, mostos 500 MPa / 10 ou 15 min e demais mostos tratados por APH. Os resultados demostraram que a APH foi capaz de promover as alterações desejáveis no processo de mostura no que se refere aos efeitos de gelatinização e hidrólise com formação dos açúcares de interesse, principalmente nos níveis mais intensos (500 MPa) de pressão. Esse resultado sugere que a produção de mosto por APH é viável tecnicamente, podendo vir a proporcionar ganho expressivo de produtividade, uma vez que a APH demanda menos tempo (5 min contra 80 min do tratamento térmico) e há redução do consumo de energia.
publishDate 2016
dc.date.issued.fl_str_mv 2016-11-28
dc.date.accessioned.fl_str_mv 2023-12-22T01:44:59Z
dc.date.available.fl_str_mv 2023-12-22T01:44:59Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Santos, Lígia Marcondes Rodrigues dos. Influência da alta pressão hidrostática na sacarificação do mosto cervejeiro. 2016. [56 f.]. Dissertação (Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos) - Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/10948
identifier_str_mv Santos, Lígia Marcondes Rodrigues dos. Influência da alta pressão hidrostática na sacarificação do mosto cervejeiro. 2016. [56 f.]. Dissertação (Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos) - Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/10948
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv REFERÊNCIAS BIBLIOGRÁFICAS ALLOSIO-OUARNIER, B. N.; QUEMENER, B.; BERTRAND, D.; BOIVIN, P.; CEDEX, V. Application of High Performance Anion Exchange Chromatography to the Study of Carbohydrate Changes in Barley During Malting. Exchange Organizational Behavior Teaching Journal, v. 106, n. 1, p. 45–52, 2000. AMORE, A.; FARACO, V. Enzymes for Food and Beverage Industries: Current Situation, Challenges and Perspectives. In: RAVISHANKAR, R. V. (Ed.). . Advances in Food Biotechnology. 1a edição ed. Oxford: Wiley Blackwell, 2015. p. 165. BAMFORTH, C. W. Nutritional aspects of beer—a review. Nutrition Research, v. 22, n. 1–2, p. 227–237, 2002. BAMFORTH, C. W. Barley and Malt Starch in Brewing : A General Review. MBAA TQ, v. 40, n. 2, p. 89–97, 2003. BAMFORTH, C. W. Current perspectives on the role of enzymes in brewing. Journal of Cereal Science, v. 50, n. 3, p. 353–357, 2009. BARBA, F. J.; ESTEVE, M. J.; FRÍGOLA, A. High Pressure Treatment Effect on Physicochemical and Nutritional Properties of Fluid Foods During Storage: A Review. Comprehensive Reviews in Food Science and Food Safety, v. 11, n. 3, p. 307–322, 2012. BEMILLER, J. N.; WHISTLER, R. L. (EDS.). Starch Chemistry and Technology. 3rd Edition. 3a edição ed. Amsterdam: Academic Press, 2009. v. 1 BOURQUE, C. Fermentability of Canadian Two-Row Barley Malt: Wort Turbidity, Density, and Sugar Content as Measures of Fermentation Potential.Journal of Chemical Information and Modeling, 2013. BRANDAM, C.; MEYER, X. M.; PROTH, J.; STREHAIANO, P.; PINGAUD, H. An original kinetic model for the enzymatic hydrolysis of starch during mashing. Biochemical Engineering Journal, v. 13, n. 1, p. 43–52, 2003. BRASIL. Produção de cervejas e refrigerantesBrasília: Receita Federal do BrasilSICOBE - Sistema de Controle de Produção de Bebidas, , 2015. BRIGGS, D. E. Malt Modification — A Century Of Evolving Views. J. Inst. Brew., v. 108, n. 4, p. 395–405, 2002. BRIGGS, D. E.; BOULTON, C. A.; BROOKES, P. A.; STEVENS, R. Brewing Science and Practice. 1. ed. Nova Iorque: CRC Press LCC, 2004. BUCKOW, R.; WEISS, U.; HEINZ, V.; KNORR, D. Stability and Catalitic Activity of Alpha-Amylase from Barley Malt at Different Pressure-Temperature Conditions. Biotechnology and bioengineering, v. 97, n. 1, p. 1–11, 2007. BUCKOW, R.; HEINZ, V.; KNORR, D. Effect of high hydrostatic pressure-temperature combinations on the activity of beta-glucanase from barley malt. Journal of the Institute of Brewing, v. 111, n. 3, p. 282–289, 2005. BUTTIMER, E. T.; BRIGGS, D. E. Characterization of solubilized forms of bound ß-amylase released by various agents. Journal of the Institute of Brewing, v. 106, n. 2, p. 71–82, 2000. 51 BUTZ, P.; GARCÍA, A. F.; LINDAUER, R.; DIETERICH, S.; BOGNAR, A.; TAUSCHER, B. Influence of ultra high pressure processing on fruit and vegetable products. Journal of Food Engineering, v. 56, p. 233–236, 2003. BUZRUL, S. A suitable model of microbial survival curves for beer pasteurization. LWT - Food Science and Technology, v. 40, n. 8, p. 1330–1336, 2007. BUZRUL, S. High hydrostatic pressure treatment of beer and wine: A review. Innovative Food Science and Emerging Technologies, v. 13, n. JANUARY, p. 1–12, 2012. BUZRUL, S.; ALPAS, H.; BOZOGLU, F. Effect of high hydrostatic pressure on quality parameters of lager beer. Journal of the Science of Food and Agriculture, v. 85, n. 10, p. 1672–1676, 2005a. BUZRUL, S.; ALPAS, H.; BOZOGLU, F. Effects of high hydrostatic pressure on shelf life of lager beer. European Food Research and Technology, v. 220, n. 5–6, p. 615–618, 2005b. CAMPUS, M. High Pressure Processing of Meat, Meat Products and Seafood. Food Engineering Reviews, v. 2, n. 4, p. 256–273, 2010. CASTELLARI, M.; ARFELLI, G.; RIPONI, C.; CARPI, G.; AMATI, A. High hydrostatic pressure treatments for beer stabilization. Journal of Food Science, v. 65, n. 6, p. 974–977, 2000. CERVBRASIL - ASSOCIAÇÃO BRASILEIRA DA INDÚSTRIA DA CERVEJA. Anuário 2015. Disponível em: <http://cervbrasil.org.br/arquivos/anuario_cb_2015_web.pdf>. Acesso em: 28 jul. 2016. CHEFTEL, J. C. Review : High-pressure, microbial inactivation and food preservation / Revisión: Alta-presión, inactivación microbiológica y conservación de alimentos. Food Science and Technology International, v. 1, n. 2–3, p. 75–90, 1995. CRISTEA, S. P.; MAZAEDA, R.; DE PRADA, C. Optimal control of beer filtration process. IFAC Proceedings Volumes (IFAC-PapersOnline), v. 10, n. PART 1, p. 762–767, 2013. DONADINI, G.; FUMI, M. D.; KORDIALIK-BOGACKA, E.; MAGGI, L.; LAMBRI, M.; SKOKAI, P. Consumer interest in specialty beers in three European markets. Food Research International, v. 85, p. 301–314, 2016. DOUZALS, J. P.; MARECHAL, P. A.; COQUILLE, J. C.; GERVAIS, P. Microscopic Study of Starch Gelatinization under High Hydrostatic. J. Agric. Food Chem, v. 4, p. 1403–1408, 1996. DURAND, G. A.; CORAZZA, M. L.; BLANCO, A. M.; CORAZZA, F. C. Dynamic optimization of the mashing process. Food Control, v. 20, n. 12, p. 1127–1140, 2009. EISENMENGER, M. J.; REYES-DE-CORCUERA, J. I. High pressure enhancement of enzymes: A review. Enzyme and Microbial Technology, v. 45, n. 5, p. 331–347, 2009. ESSLINGE, H. M. (ED.). Handbook of Brewing. weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2009. EVANS, D.; SHEEHAN, M. C.; STEWART, D. C. Impact of Malt Derived Proteins on Beer Foam Quality. Part II: The Influence of Malt Foam positive Proteins and Non‐starch Polysaccharides on Beer Foam Quality. Journal of the Institute of Brewing, v. 105, n. 2, p. 171–177, 1999. FARKAS, D. F.; HOOVER, D. G. High pressure processing. Journal of Food Science, v. 65, n. 8 SPEC. SUPPL., p. 47–64, 2000. FARR, D. High pressure technology in the food industry. Trends in Food Science & Technology, v. 1, p. 14–16, 1990. FEILNER, R.; JACOB, F. F. Improving resistance to aging and increasing haze stability in southern German wheat beer through process optimization. Monatsschrift für Brauwissenschaft, v. 68, p. 58, 52 2015. FISCHER, S.; SCHÖBERL, H.; RUSS, W. MEYER-PITTROFF, R. Auswirkungen von hydrostatischem Hochdruck auf den Brauprozeß und das Bier. Monatsschrift für Brauwissenschaft, v. 51, n. 7–8, p. 120–123, 1998. FISCHER, S.; RUSS, W.; BUCKOW, R.; HEINZ, V.; ULMER, H.; BEHR, J.; KNOOR, D.; VOGEL, R. F. Effects of hydrostatic high pressure on micro- biological and technological characteristics of beer. Monatsschrift für Brauwissenschaft, June, p. 90–99, 2006. Fluxograma de produção de cerveja. Disponível em: <http://www.dortmund.com.br/fabricacao.php>. Acesso em: 1 out. 2016. FRANCHI, M. A.; TRIBST, A. A. L.; CRISTIANINI, M. Inactivation of Lactobacillus brevis in beer utilizing a combination of high-pressure homogenization and lysozyme treatment. Journal of the Institute of Brewing, v. 117, n. 4, p. 634–638, 2011a. FRANCHI, M. A.; TRIBST, A. A. L.; CRISTIANINI, M. Effects of High Pressure Homogenization on Beer Quality Attributes. Journal Of The Institute Of Brewing, v. 117, n. 2, p. 195–198, 2011b. GAETANO, G. DE; CONSTANZO, S.; CASTELNUOVO, A. DI; BADIMON, L.; BEJKO, D. Effects of moderate beer consumption on health and disease : A consensus document. Nutrition, Metabolism and Cardiovascular Diseases, v. 26, n. 6, p. 443–467, 2016. GÄNZLE, M. G.; ULMER, H. M.; VOGEL, R. F. High pressure inactivation of Lactobacillus plantarum in a model beer system. Journal of Food Science, v. 66, p. 1174–1181, 2001. GOMES, M. R. A.; CLARK, R.; LEDWARD, D. A. Effects of high pressure on amylases and starch in wheat and barley flours. Food Chemistry, v. 63, n. 3, p. 363–372, 1998. GUPTA, M.; ABU-GHANNAM, N.; GALLAGHAR, E. Barley for brewing: Characteristic changes during malting, brewing and applications of its by-products. Comprehensive Reviews in Food Science and Food Safety, v. 9, n. 3, p. 318–328, 2010. HAGER, A.; TAYLOR, J. P.; WATERS, D. M.; ARENDT, E. K. Gluten free beer-A review. Trends in Food Science & Technology, v. 36, p. 44–54, 2014. HARA, A.; NAGAHAMA, G.; OHBAYASHI, A.; HAYASHI, R. Effects of high pressure on inactivation of enzymes and microorganisms in non-pasteurized rice wine (Namazake). Journal of the Agricultural Chemical Society of Japan (Japan), 1990. HEINZ, V.; BUCKOW, R.; KNORR, D. Catalytic Activity of β-Amylase from Barley in Different Pressure/ Temperature Domains. Biotechnol. Prog., v. 21, p. 1632–1638, 2005. HEITMANN, M.; ZANNINI, E.; ARENDT, E. K. Impact of different beer yeasts on wheat dough and bread quality parameters. Journal of Cereal Science, v. 63, p. 49–56, 2015. HITE, B. H. The effect of pressure in the preservation of milk: a preliminary report. West Virginia Agricultural Experiment Station, v. 58, 1899. HOLTZ, C.; GASTL, M.; BECKER, T. Turbidity potentials of single long-chain fatty acids and gelatinised starch in synthetic lautering wort. International Journal of Food Science and Technology, v. 50, n. 4, p. 906–912, 2015. HU, S.; DONG, J.; FAN, W.; YU, J.; YIN, H.; HUANG, S.; LIU, J.; HUANG, S.; ZHANG, X. The influence of proteolytic and cytolytic enzymes on starch degradation during mashing. Journal of the Institute of Brewing, v. 120, n. 4, p. 379–384, 2014. HUANG, H. W.; HSU, C. P. YANG, B. B.; WANG, C. Y. Potential utility of high-pressure processing to address the risk of food allergen concerns. Comprehensive Reviews in Food Science and Food Safety, v. 13, n. 1, p. 78–90, 2014. 53 IMBERTY, A.; BULÉON, A.; TRAN, V.; PÉREZ, S. Recent Advances in Knowledge of Starch Structure. Starch - Stärke, v. 43, n. 10, p. 375–384, 1991. JENKINS, P. J.; DONALD, A M. Gelatinisation of starch: a combined SAXS/WAXS/SANS study. Carbohydrate Research, v. 308, p. 133–147, 1998. KALICHEVSKY, M. T.; KNORR, D.; LILLFORD, P. J. Potential food applications of high-pressure effects on ice-water transitions. Trends in Food Science Technology, v. 6, n. 8, p. 253–259, 1995. KING, B. M.; DUINEVELD, C. A. . Changes in bitterness as beer ages naturally. Food Quality and Preference, v. 10, n. 4–5, p. 315–324, 1999. KNORR, D.; SCHLUETER, O.; HEINZ, V. Impact of high hydrostatic pressure on phase transitions of foodsFood technology (USA), , 1998. KRAFTCHICK, J. F.; BYRD, E. T.; CANZIANI, B. GLADWELL, N. J. Understanding beer tourist motivation. Tourism Management Perspectives, v. 12, p. 41–47, 2014. KÜHBECK, F.; BACK, W.; KROTTENTHALER, M. Influence of Lauter Turbidity on Wort Composition, Fermentation Performance and Beer Quality - A Review. Journal of the Institute of Brewing, v. 112, n. 3, p. 215–221, 2006. KUNUGI, S. Enzyme Reactions under High Pressure and Their Applications. Enzyme Engineering XI, v. 672, n. 1, p. 293–304, 1992. KUNZE, W. Technology Brewing and Malting. 5. ed. Berlim: VLB, 2014. LACROIX, N.; FLISS, I.; MAKHLOUF, J. Inactivation of pectin methylesterase and stabilization of opalescence in orange juice by dynamic high pressure. Food Research International, v. 38, p. 569–576, 2005. LAURO, M.; POUTANEN, K.; FORSSELL, P. Effect of partial gelatinization and lipid addition on α-amylolysis of barley starch granules. Cereal Chemistry, v. 77, n. 5, p. 595–601, 2000. LIMA, L.; BRANDÃO, T.; LIMA, N.; TEIXEIRA, J. A. Comparing the Impact of Environmental Factors During Very High Gravity Brewing Fermentations. J. Inst. Brew., v. 117, n. 3, p. 359–367, 2011. LIU, F.; LI, R.; WANG, Y.; BI, X.; LIAO, X. Effects of high hydrostatic pressure and high-temperature short-time on mango nectars: Changes in microorganisms, acid invertase, 5- hydroxymethylfurfural, sugars, viscosity, and cloud. Innovative Food Science and Emerging Technologies, v. 22, p. 22–30, 2014. LIU, Y.; SELOMULYO, V. O.; ZHOU, W. Effect of high pressure on some physicochemical properties of several native starches. Journal of Food Engineering, v. 88, n. 1, p. 126–136, 2008. LODOLO, E. J.; KOCK, J. L. F.; AXCELL, B. C.; BROOKS, M. The yeast Saccharomyces cerevisiae - The main character in beer brewing. FEMS Yeast Research, v. 8, n. 7, p. 1018–1036, 2008. MACGREGOR, A W.; BAZIN, S. L.; MACRI, L. J.; BABB, J. C. Modelling the Contribution of Alpha-Amylase , Beta-Amylase and Limit Dextrinase to Starch Degradation During Mashing. Journal of Cereal Science, v. 29, p. 161–169, 1999. MENESES, F. J.; HENSCHKE, P. A.; JIRANEK, V. A survey of industrial strains of saccharomyces cerevisiae reveals numerous altered patterns of maltose and sucrose utilisation. Journal Of The Institute Of Brewing, v. 108, n. 3, p. 310–321, 2002. MERTENS, B.; DEPLACE, G. Engineering aspects of high pressure technology in the food industryFood technology (USA), , 1993. MILLAN-TESTA, C. E.; MENDEZ-MONTEALVO, M. G.; OTTENHOF, M. A.; FARHAT, I. A.; 54 BELLO-PÉREZ, L. A. Determination of the molecular and structural characteristics of okenia, mango, and banana starches. Journal of Agricultural and Food Chemistry, v. 53, n. 3, p. 495–501, 2005. MONTANARI, L.; FLORIDI, S.; MARCONI, O.; TIRONZELLI, M.; FANTOZZI, P. Effect of mashing procedures on brewing. European Food Research and Technology, v. 221, n. 1–2, p. 175–179, 2005. MOZHAEV, V. V.; LANGE, R.; KUDRYASHOVA, E. V.; BALNY, C. Application of high hydrostatic pressure for increasing activity and stability of enzymes. Biotechnology and bioengineering, v. 52, n. 2, p. 320–331, 1996. MÚJICA-PAZ, H.; VALDEZ-FRAGOSO, A.; SAMSON, C. T.; WELTI-CHANES, J.; TORRES, A. High-Pressure Processing Technologies for the Pasteurization and Sterilization of Foods. Food and Bioprocess Technology, v. 4, n. 6, p. 969–985, 2011. MULLER, R. the Effects of Mashing Temperature and Mash Thickness on Wort Carbohydrate Composition. Journal of the Institute of Brewing, v. 97, n. 2, p. 85–92, 1991. MULLER, R. A mathematical model of the formation of fermentable sugars from starch hydrolysis during high-temperature mashing. Enzyme and Microbial Technology, v. 27, n. 3–5, p. 337–344, 2000. MURALIKRISHNA, G.; NIRMALA, M. Cereal α-amylases - An overview. Carbohydrate Polymers, v. 60, n. 2, p. 163–173, 2005. MUSTER-SLAWITSCH, B.; WEISS, W.; SCHNITZER, H.; BRUNNER, C. The green brewery concept - Energy efficiency and the use of renewable energy sources in breweries. Applied Thermal Engineering, v. 31, n. 13, p. 2123–2134, 2011. NOEL MARIE-OLIVE, M.; ATHES, V.; COMBES, D. Combined effects of pressure and temperature on enzyme stability. International Journal of High Pressure Research, v. 19, n. 1–6, p. 317–322, 2000. NORTHROP, D. B. Effects of high pressure on enzymatic activity. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, v. 1595, n. 1–2, p. 71–79, 2002. OLAJIRE, A. A. The brewing industry and environmental challenges. Journal of Cleaner Production, p. 1–21, 2012. OSUMI, M.; SATO, M.; KOBORI, H.; FENG, Z. H.; ISHIJIMA, S. A.; HAMADA, K.; SHIMADA, S. Morphological effects of pressure stress on yeasts. Progress in Biotechnology, v. 13, p. 37–46, 1996. PADIERNOS, C. A.; LIM, S-Y.; SWANSON, B. G.; ROSS, C. F.; CLARK, S. High hydrostatic pressure modification of whey protein concentrate for use in low-fat whipping cream improves foaming properties. Journal of dairy science, v. 92, n. 7, p. 3049–56, 2009. PÁTKOVÁ, J.; SMOGROVICOVÁ, D.; BAFRNCOVÁ, P.; DÖMÉNY, Z. Changes in the yeast metabolism at very high-gravity wort fermentation. Folia microbiologica, v. 45, n. 4, p. 335–338, 2000. PATTERSON, M. F. Microbiology of pressure-treated foods. Journal of Applied Microbiology, v. 98, n. 6, p. 1400–1409, 2005. PEI-LING, L.; XIAO-SONG, H.; QUN, S. Effect of high hydrostatic pressure on starches: A review. Starch - Stärke, v. 62, p. 615–628, 2010. PÉREZ-LAMELA, C.; LEDWARD, D. A.; REED, R. J. R.; SIMAL-GÁNDARA, J. Application of high-pressure treatment in the mashing of white malt in the elaboration process of beer. Journal of the Science of Food and Agriculture, v. 82, n. October 2001, p. 258–262, 2002. 55 PÉREZ-LAMELA, C.; REED, R. J. R.; SIMAL-GÁNDARA, J. High pressure application to wort and beer. Deutsche Lebensmittel-Rundschau, v. 100, n. 2, p. 53–56, 2004. PFLANZER, S.; CRUZ, A.; HATANAKA, C.; GIGANTE, M. Revisão : Efeito do processamento por alta pressão hidrostática nas características físico-químicas , microbiológicas e nutricionais do leite. Brazilian Journal of Food Technology, v. 11, n. 4, p. 241–251, 2008. PIDDOCKE, M. P.; KREISZ, S.; HELDT-HANSEN, H. P.; NIELSEN, K. F.; OLSSON, L. Physiological characterization of brewer’s yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts. Applied Microbiology and Biotechnology, v. 84, n. 3, p. 453–464, 2009. PREEDY, V. R. (ED.). Beer in Health and Disease Prevention. California: Press, Academic, 2011. PUTSEYS, J. A.; LAMBERTS, L.; DELCOUR, J. A. Amylose-inclusion complexes: Formation, identity and physico-chemical properties. Journal of Cereal Science, v. 51, n. 3, p. 238–247, 2010. RAKETE, S.; KLAUS, A.; GLOMB, M. A. Investigations on the maillard reaction of dextrins during aging of pilsner type beer. Journal of Agricultural and Food Chemistry, v. 62, n. 40, p. 9876–9884, 2014. RASTOGI, N. K. Recent Developments in High Pressure Processing of Foods. 1a edição ed. Nova Iorque: Springer, 2013. RENDUELES, E.; OMER, M. K.; ALVSEIKE, O.; ALONSO-CALLEJA, C.; CAPITA, R.; PRIETO, M. Microbiological food safety assessment of high hydrostatic pressure processing: A review. LWT - Food Science and Technology, v. 44, n. 5, p. 1251–1260, 2011. SCHNEIDERBANGER, H.; KOOB, J.; POLTINGER, S.; JACOB, F.; HUTZLER, M. Gene expression in wheat beer yeast strains and the synthesis of acetate esters. Journal of the Institute of Brewing, v. 122, n. 3, p. 403–411, 2016. SEBRAE. Potencial de consumo de cervejas no Brasil. 2014 Disponível em: <http://segmentos.sebrae2014.com.br/agronegocio/potencial-de-consumo-de-cervejas-no-brasil/>. Acesso em: 3 nov. 2014. SEBRAE. Relatório de Inteligência sobre Cervejas Artesanais. 2015 Disponível em: <https://www.sebraeinteligenciasetorial.com.br/produtos/relatorios-de-inteligencia/cervejas-artesanais/55c4ad3614d0c01d007ffeae#download>. Acesso em: 28 jul. 2016. SELMI, B.; MARION, D.; PERRIER CORNET, J. M.; DOUZALS, J. P.; GERVAIS, P. Amyloglucosidase hydrolysis of high-pressure and thermally gelatinized corn and wheat starches. Journal of Agricultural and Food Chemistry, v. 48, n. 7, p. 2629–2633, 2000. SHUMIN, H.; YU, J.; DONG, J.; EVANS, D.; LIU, J.; HUANG, S.; HUANG, S.; FAN, W.; YIN, H.; LI, M. Relationship between levels of diastatic power enzymes and wort sugar production from different barley cultivars during the commercial mashing process of brewing. Starch - Stärke, v. 66, p. 615–623, 2014. SIEBERT, K. J.; CARRASCO, A.; LYNN, P. Y. Formation of Protein - Polyphenol Haze in Beverages. Journal of Agricultural and Food Chemistry …, v. 44, n. 5, p. 1997–2005, 1996. SILVA, F.; FERREIRA, I. M. P. L. V. O.; TEIXEIRA, N. Polipeptídeos e proteínas com influência na qualidade da espuma da cerveja e métodos analíticos utilizados no seu estudo. Quimica Nova, v. 29, n. 6, p. 1326–1331, 2006. SMELT, J. P. P. . Recent advances in the microbiology of high pressure processing. Trends in Food Science & Technology, v. 9, n. 4, p. 152–158, 1998. STEVENS, J. F.; PAGE, J. E. Xanthohumol and related prenylflavonoids from hops and beer: To your good health! Phytochemistry, v. 65, n. 10, p. 1317–1330, 2004. 56 STOLT, M.; OINONEN, S.; AUTIO, K. Effect of high pressure on the physical properties of barley starch. Innovative Food Science & Emerging Technologies, v. 1, n. 3, p. 167–175, 2000. TAMAOKA, T.; ITOH, N.; HAYASHI, R. High Pressure Effect on Maillard Reaction. Agricultural and biological chemistry, v. 55, n. 8, p. 2071–2074, 1991. TANG, H.; MITSUNAGA, T.; KAWAMURA, Y. Relationship between functionality and structure in barley starches. Carbohydrate Polymers, v. 57, n. 2, p. 145–152, 2004. TESTER, R. F.; KARKALAS, J.; QI, X. Starch - Composition, fine structure and architecture. Journal of Cereal Science, v. 39, n. 2, p. 151–165, 2004. TRIBST, A. A. L.; AUGUSTO, P. E. D.; CRISTIANINI, M. Multi-pass high pressure homogenization of commercial enzymes : Effect on the activities of glucose oxidase , neutral protease and amyloglucosidase at different temperatures. Innovative Food Science and Emerging Technologies, v. 18, p. 83–88, 2013. TRIBST, A. A. L.; CRISTIANINI, M. Changes in commercial glucose oxidase activity by high pressure homogenization. Innovative Food Science and Emerging Technologies, v. 16, p. 355–360, 2012. ULMER, H. M.; HERBERHOLD, H.; FAHSEL, S.; GÄNZLE, M. G.; WINTER, R.; VOGEL, R. F. Effects of pressure-induced membrane phase transitions on inactivation of HorA, an ATP-dependent multidrug resistance transporter, in Lactobacillus plantarum. Applied and Environmental Microbiology, v. 68, n. 3, p. 1088–1095, 2002. ULMER, H. M.; GÄNZLE, M. G.; VOGEL, R. F. Effects of High Pressure on Survival and Metabolic Activity of Lactobacillus plantarum TMW1. 460. Applied and Environmental Microbiology, v. 66, n. 9, p. 3966–3973, 2000. VASANTHAN, T.; BHATTY, R. S. Physicochemical properties of small- and large-granule starches of waxy, regular, and high-amylose barleysCereal Chemistry, 1996. VRIESEKOOP, F.; RATHBAND, A.; MACKINLAY, J.; BRYCE, J. H. The evolution of dextrins during the mashing and fermentation of all-malt Whisky production. Journal of the Institute of Brewing, v. 116, n. 3, p. 230–238, 2010. WALTERS, M. T.; HAESMAN, A. P.; HUGHES, P. S. Comparison of (+)-catechin and ferulic acid as natural antioxidants and their impact on beer flavour stability. Part 2: Extended storage trials. Journal of the American Society of Brewing Chemists, v. 55, n. 3, p. 91–98, 1997. WIEME, A. D.; SPITAELS, F.; AERTS, M.; DE BRUYNE, K.; VAN LANDSCHOOT, A.; VANDAMME, P. Identification of beer-spoilage bacteria using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. International Journal of Food Microbiology, v. 185, p. 41–50, 2014. WILSON, D. R.; DABROWSKI, L.; STRINGER, S.; MOEZELAAR, R.; BROCKLEHURST, T. F. High pressure in combination with elevated temperature as a method for the sterilisation of food. Trends in Food Science and Technology, v. 19, n. 6, p. 289–299, 2008. WRIGHT, C. A.; BRUHN, C. M.; HEYMANN, H.; BAMFORTH, C. W. Beer and wine consumers’ perceptions of the nutritional value of alcoholic and nonalcoholic beverages. Journal of Food Science, v. 73, n. 1, 2008. YOSHIMOTO, Y.; TASHIRO, J.; TAKENOUCHI, T.; TAKEDA, Y. Molecular Structure and Some Physicochemical Properties of High-Amylose Barley Starches. Cereal Chemistry, v. 77, n. 3, p. 279–285, 2000.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Tecnologia
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10948/1/2016%20-%20L%c3%adgia%20Marcondes%20Rodrigues%20dos%20Santos.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10948/2/2016%20-%20L%c3%adgia%20Marcondes%20Rodrigues%20dos%20Santos.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10948/3/2016%20-%20L%c3%adgia%20Marcondes%20Rodrigues%20dos%20Santos.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10948/4/license.txt
bitstream.checksum.fl_str_mv 5daa3f8419c7b424de991517f98719d8
3d9638f31524e14c20863ad953b03658
74cdeac055ec3629545f632b08dd75c4
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810108130990751744