Análise discriminante aplicada para predição dos custos assistenciais no setor de saúde suplementar : um estudo de caso

Detalhes bibliográficos
Autor(a) principal: Silva, Luiz Inácio Sampaio da
Data de Publicação: 2017
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da UFS
Texto Completo: http://ri.ufs.br/jspui/handle/riufs/7182
Resumo: Supplementary health in Brazil plays an essential role in health care. In 2016, health plan operators were responsible for providing services to 47.8 million beneficiaries. This number denotes the degree of relevance of the supplementary health, consequently the costs presented by the operators are high, leading to several financial discussions, making management of expenses relevant. In this scenario, several authors presented papers regarding the importance of managing the risks from expenses, as well as the prediction of care costs. In this way, this work seeks, through the discriminant analysis, to generate a prediction model that contributes to the classification of the risk of the beneficiary, making possible to identify and analyze the degree of individual risk, allowing the company to direct strategic efforts to manage the costs of these people. As a result, the beneficiaries of the health plan operators were classified into six types of risk: without risk factor, low risk, medium risk, high risk, very high risk and catastrophic risk. From the risk classification, the multivariate analysis was applied to obtain a prediction model capable of indicating the classification of the individual. The discriminant analysis was applied using SPSS software version 19.0 in order to estimate the discriminant function. In the present study, the public of interest are the individuals with the highest expenses, that is, above the high cost, being these people the target of strategies to reduce future care costs. The realization of the discriminant analysis assumptions revealed that 55.04% of the beneficiaries were classified correctly. This way, as an additional analysis, the first three categories were grouped into the low-risk class and the last three were at high risk. In the first class it was observed that 99.08% of the individuals were classified correctly, however, in the second, only 19.71% of the observations were classified correctly. The results addressed in the model did not present expressive predictive validity for the proposed problem, but this fact does not imply that the discriminant analysis cannot be used in risk management operations in the health plan operators.
id UFS-2_f922c3754344716f5824d46ddf12ca63
oai_identifier_str oai:ufs.br:riufs/7182
network_acronym_str UFS-2
network_name_str Repositório Institucional da UFS
repository_id_str
spelling Silva, Luiz Inácio Sampaio daSá, Marcelo Coelho de2018-01-09T13:23:26Z2018-01-09T13:23:26Z2017-04-26SILVA, Luiz Inácio Sampaio da. Análise discriminante aplicada para predição dos custos assistenciais no setor de saúde suplementar : um estudo de caso. São Cristóvão, SE: 2017. Monografia (Bacharelado em Ciências Atuariais) - Departamento de Estatísticas e Ciências Atuariais, Universidade Federal de Sergipe, São Cristóvão, SE, 2017.http://ri.ufs.br/jspui/handle/riufs/7182Supplementary health in Brazil plays an essential role in health care. In 2016, health plan operators were responsible for providing services to 47.8 million beneficiaries. This number denotes the degree of relevance of the supplementary health, consequently the costs presented by the operators are high, leading to several financial discussions, making management of expenses relevant. In this scenario, several authors presented papers regarding the importance of managing the risks from expenses, as well as the prediction of care costs. In this way, this work seeks, through the discriminant analysis, to generate a prediction model that contributes to the classification of the risk of the beneficiary, making possible to identify and analyze the degree of individual risk, allowing the company to direct strategic efforts to manage the costs of these people. As a result, the beneficiaries of the health plan operators were classified into six types of risk: without risk factor, low risk, medium risk, high risk, very high risk and catastrophic risk. From the risk classification, the multivariate analysis was applied to obtain a prediction model capable of indicating the classification of the individual. The discriminant analysis was applied using SPSS software version 19.0 in order to estimate the discriminant function. In the present study, the public of interest are the individuals with the highest expenses, that is, above the high cost, being these people the target of strategies to reduce future care costs. The realization of the discriminant analysis assumptions revealed that 55.04% of the beneficiaries were classified correctly. This way, as an additional analysis, the first three categories were grouped into the low-risk class and the last three were at high risk. In the first class it was observed that 99.08% of the individuals were classified correctly, however, in the second, only 19.71% of the observations were classified correctly. The results addressed in the model did not present expressive predictive validity for the proposed problem, but this fact does not imply that the discriminant analysis cannot be used in risk management operations in the health plan operators.A saúde suplementar no Brasil desempenha função essencial na assistência à saúde. Em 2016, as operadoras de planos de saúde foram responsáveis pela prestação de serviços para 47,8 milhões de beneficiários. Este número denotão grau de relevância da saúde suplementar, em consequência os custos apresentados pelas operadoras são altos, ocasionando várias discussões financeiras, tornando o gerenciamento dos gastos pertinente. Neste cenário, diversos autores apresentaram trabalhos referentes à importância de gerenciar os riscos oriundos das despesas,bem como a realização de predição de custos assistenciais. Desse modo, este trabalho busca,através da análise discriminante,gerar um modelo de predição que contribua para a classificação do risco do beneficiário, possibilitando identificar e analisar o grau de risco individual, permitindoque a empresa direcione esforços estratégicos para gerenciar os custos destas pessoas. Em vista disso, os beneficiários das operadoras do plano de saúde foram classificados em seis tipos de risco: sem fator de risco, baixo risco, médio risco, alto risco, altíssimo risco e risco catastrófico. A partir da classificação do risco, aplicou-se a análise multivariada para a obtenção de um modelo de predição capaz de indicar qual a classificação do indivíduo. Foi aplicada a análise discriminante com a utilização do software SPSS versão 19.0 com o objetivo de estimar a função discriminante. No presente estudo, o público de interesse são os indivíduos com maiores gastos, ou seja, acima de alto custo, sendo estas as pessoas alvo de estratégias de redução dos custos assistenciais futuros.A realização dos pressupostos da análise discriminante revelou que 55,04% dos beneficiários foram classificados corretamente. Assim, como análise adicional, as três primeiras categorias foram agrupadas na classe de baixo risco e as três últimas de alto risco. Na primeira classe observou-se que 99,08% dos indivíduos foram classificados corretamente, no entanto, na segunda, somente 19,71% das observações foram classificadas corretamente. Os resultados abordados no modelo apresentaram pouca relevância na validade preditiva para o problema proposto, porém esse fato não implica que a análise discriminante não possa ser utilizada em operações de gestão de risco nas operadoras de planos de saúde.São Cristóvão, SEporCiências atuariaisEstatísticaPlanos de saúde no BrasilCustos com saúdeOperadoras de planos de saúdeAssistência saúdeGestão da saúde no BrasilCost of careBeneficiariesDiscriminant analysisOUTROS::CIENCIAS ATUARIAISAnálise discriminante aplicada para predição dos custos assistenciais no setor de saúde suplementar : um estudo de casoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisUniversidade Federal de SergipeDECAT - Departamento de Estatística e Ciências Atuariais – Ciências Atuariais – São Cristóvão – Presencialreponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/7182/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALLuiz_Inacio_Sampaio_Silva.pdfLuiz_Inacio_Sampaio_Silva.pdfapplication/pdf1845205https://ri.ufs.br/jspui/bitstream/riufs/7182/2/Luiz_Inacio_Sampaio_Silva.pdf195085f78bd7c8faba74a9ed593b3fabMD52TEXTLuiz_Inacio_Sampaio_Silva.pdf.txtLuiz_Inacio_Sampaio_Silva.pdf.txtExtracted texttext/plain93485https://ri.ufs.br/jspui/bitstream/riufs/7182/3/Luiz_Inacio_Sampaio_Silva.pdf.txt13d9df5c1f628488f8b1f33f984cc31cMD53THUMBNAILLuiz_Inacio_Sampaio_Silva.pdf.jpgLuiz_Inacio_Sampaio_Silva.pdf.jpgGenerated Thumbnailimage/jpeg1262https://ri.ufs.br/jspui/bitstream/riufs/7182/4/Luiz_Inacio_Sampaio_Silva.pdf.jpg94dafcb754f9550114079db481b3b60cMD54riufs/71822018-01-17 11:00:27.67oai:ufs.br:riufs/7182TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2018-01-17T14:00:27Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false
dc.title.pt_BR.fl_str_mv Análise discriminante aplicada para predição dos custos assistenciais no setor de saúde suplementar : um estudo de caso
title Análise discriminante aplicada para predição dos custos assistenciais no setor de saúde suplementar : um estudo de caso
spellingShingle Análise discriminante aplicada para predição dos custos assistenciais no setor de saúde suplementar : um estudo de caso
Silva, Luiz Inácio Sampaio da
Ciências atuariais
Estatística
Planos de saúde no Brasil
Custos com saúde
Operadoras de planos de saúde
Assistência saúde
Gestão da saúde no Brasil
Cost of care
Beneficiaries
Discriminant analysis
OUTROS::CIENCIAS ATUARIAIS
title_short Análise discriminante aplicada para predição dos custos assistenciais no setor de saúde suplementar : um estudo de caso
title_full Análise discriminante aplicada para predição dos custos assistenciais no setor de saúde suplementar : um estudo de caso
title_fullStr Análise discriminante aplicada para predição dos custos assistenciais no setor de saúde suplementar : um estudo de caso
title_full_unstemmed Análise discriminante aplicada para predição dos custos assistenciais no setor de saúde suplementar : um estudo de caso
title_sort Análise discriminante aplicada para predição dos custos assistenciais no setor de saúde suplementar : um estudo de caso
author Silva, Luiz Inácio Sampaio da
author_facet Silva, Luiz Inácio Sampaio da
author_role author
dc.contributor.author.fl_str_mv Silva, Luiz Inácio Sampaio da
dc.contributor.advisor1.fl_str_mv Sá, Marcelo Coelho de
contributor_str_mv Sá, Marcelo Coelho de
dc.subject.por.fl_str_mv Ciências atuariais
Estatística
Planos de saúde no Brasil
Custos com saúde
Operadoras de planos de saúde
Assistência saúde
Gestão da saúde no Brasil
topic Ciências atuariais
Estatística
Planos de saúde no Brasil
Custos com saúde
Operadoras de planos de saúde
Assistência saúde
Gestão da saúde no Brasil
Cost of care
Beneficiaries
Discriminant analysis
OUTROS::CIENCIAS ATUARIAIS
dc.subject.eng.fl_str_mv Cost of care
Beneficiaries
Discriminant analysis
dc.subject.cnpq.fl_str_mv OUTROS::CIENCIAS ATUARIAIS
description Supplementary health in Brazil plays an essential role in health care. In 2016, health plan operators were responsible for providing services to 47.8 million beneficiaries. This number denotes the degree of relevance of the supplementary health, consequently the costs presented by the operators are high, leading to several financial discussions, making management of expenses relevant. In this scenario, several authors presented papers regarding the importance of managing the risks from expenses, as well as the prediction of care costs. In this way, this work seeks, through the discriminant analysis, to generate a prediction model that contributes to the classification of the risk of the beneficiary, making possible to identify and analyze the degree of individual risk, allowing the company to direct strategic efforts to manage the costs of these people. As a result, the beneficiaries of the health plan operators were classified into six types of risk: without risk factor, low risk, medium risk, high risk, very high risk and catastrophic risk. From the risk classification, the multivariate analysis was applied to obtain a prediction model capable of indicating the classification of the individual. The discriminant analysis was applied using SPSS software version 19.0 in order to estimate the discriminant function. In the present study, the public of interest are the individuals with the highest expenses, that is, above the high cost, being these people the target of strategies to reduce future care costs. The realization of the discriminant analysis assumptions revealed that 55.04% of the beneficiaries were classified correctly. This way, as an additional analysis, the first three categories were grouped into the low-risk class and the last three were at high risk. In the first class it was observed that 99.08% of the individuals were classified correctly, however, in the second, only 19.71% of the observations were classified correctly. The results addressed in the model did not present expressive predictive validity for the proposed problem, but this fact does not imply that the discriminant analysis cannot be used in risk management operations in the health plan operators.
publishDate 2017
dc.date.issued.fl_str_mv 2017-04-26
dc.date.accessioned.fl_str_mv 2018-01-09T13:23:26Z
dc.date.available.fl_str_mv 2018-01-09T13:23:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, Luiz Inácio Sampaio da. Análise discriminante aplicada para predição dos custos assistenciais no setor de saúde suplementar : um estudo de caso. São Cristóvão, SE: 2017. Monografia (Bacharelado em Ciências Atuariais) - Departamento de Estatísticas e Ciências Atuariais, Universidade Federal de Sergipe, São Cristóvão, SE, 2017.
dc.identifier.uri.fl_str_mv http://ri.ufs.br/jspui/handle/riufs/7182
identifier_str_mv SILVA, Luiz Inácio Sampaio da. Análise discriminante aplicada para predição dos custos assistenciais no setor de saúde suplementar : um estudo de caso. São Cristóvão, SE: 2017. Monografia (Bacharelado em Ciências Atuariais) - Departamento de Estatísticas e Ciências Atuariais, Universidade Federal de Sergipe, São Cristóvão, SE, 2017.
url http://ri.ufs.br/jspui/handle/riufs/7182
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.initials.fl_str_mv Universidade Federal de Sergipe
dc.publisher.department.fl_str_mv DECAT - Departamento de Estatística e Ciências Atuariais – Ciências Atuariais – São Cristóvão – Presencial
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFS
instname:Universidade Federal de Sergipe (UFS)
instacron:UFS
instname_str Universidade Federal de Sergipe (UFS)
instacron_str UFS
institution UFS
reponame_str Repositório Institucional da UFS
collection Repositório Institucional da UFS
bitstream.url.fl_str_mv https://ri.ufs.br/jspui/bitstream/riufs/7182/1/license.txt
https://ri.ufs.br/jspui/bitstream/riufs/7182/2/Luiz_Inacio_Sampaio_Silva.pdf
https://ri.ufs.br/jspui/bitstream/riufs/7182/3/Luiz_Inacio_Sampaio_Silva.pdf.txt
https://ri.ufs.br/jspui/bitstream/riufs/7182/4/Luiz_Inacio_Sampaio_Silva.pdf.jpg
bitstream.checksum.fl_str_mv 098cbbf65c2c15e1fb2e49c5d306a44c
195085f78bd7c8faba74a9ed593b3fab
13d9df5c1f628488f8b1f33f984cc31c
94dafcb754f9550114079db481b3b60c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)
repository.mail.fl_str_mv repositorio@academico.ufs.br
_version_ 1802110796962988032