Mitigando viés de gênero na tradução automática para o português
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNIFESP |
Texto Completo: | https://hdl.handle.net/11600/70983 |
Resumo: | A Tradução Automática (TA) tornou-se uma ferramenta essencial na era da globalização, facilitando a comunicação e o acesso à informação em diversas línguas. No entanto, a presença de viés em modelos de TA representa um desafio significativo, especialmente em línguas menos populares como o Português. Um dos desafios está relacionado à presença de viés de gênero na tradução, em que estereótipos e desigualdades sociais podem ser inadvertidamente perpetuados. Esta pesquisa se concentra em abordar e mitigar o viés de gênero em modelos de TA do Inglês para o Português, uma área ainda pouco explorada em comparação com outros pares de línguas. O foco era desenvolver uma metodologia que preservasse a precisão das traduções, ao mesmo tempo em que promovia a equidade de gênero nos textos gerados. Para isso, a estratégia adotada foi a de aplicar técnicas de ajuste fino (fine-tuning) em um modelo de TA pré-treinado, visando otimizar os parâmetros do modelo para alcançar traduções precisas e reduzir o viés de gênero. A pesquisa desenvolveu um processo de ajuste fino focado na redução do viés, que inclui a criação de um corpus paralelo Inglês-Português equilibrado em relação à representação estereotipada / não estereotipada de gênero. Foi utilizado o modelo de TA pré-treinado MarianMT como base, o qual foi ajustado utilizando um conjunto de dados específico, visando mitigar o viés de gênero nas traduções do Inglês para o Português, sem comprometer demasiadamente a qualidade do modelo original. Os resultados, medidos com base no conjunto de testes WinoMT, determinados pelos indicadores ∆G, ∆S e a acurácia global (preservação do gênero da entidade principal do original), mostraram uma melhoria significativa na equidade de gênero após o emprego do fine-tuning, embora com uma ligeira redução na qualidade da tradução, verificada pela pontuação BLEU (BiLingual Evaluation Understudy). Este estudo não só demonstra a eficácia do fine-tuning para atenuar o viés de gênero em traduções do Inglês para o Português, mas também contribui para a compreensão mais ampla de como abordar este desafio e abre caminhos para futuras pesquisas na área, ressaltando a importância de criar sistemas de inteligência artificial mais inclusivos e eticamente responsáveis. |
id |
UFSP_d833e06ae72d514aff501a72f3d204cc |
---|---|
oai_identifier_str |
oai:repositorio.unifesp.br/:11600/70983 |
network_acronym_str |
UFSP |
network_name_str |
Repositório Institucional da UNIFESP |
repository_id_str |
3465 |
spelling |
Mitigando viés de gênero na tradução automática para o portuguêsMitigating gender bias in machine translation to portugueseTradução AutomáticaViés de GêneroProcessamento de Linguagem NaturalFine-TuningEquidadeA Tradução Automática (TA) tornou-se uma ferramenta essencial na era da globalização, facilitando a comunicação e o acesso à informação em diversas línguas. No entanto, a presença de viés em modelos de TA representa um desafio significativo, especialmente em línguas menos populares como o Português. Um dos desafios está relacionado à presença de viés de gênero na tradução, em que estereótipos e desigualdades sociais podem ser inadvertidamente perpetuados. Esta pesquisa se concentra em abordar e mitigar o viés de gênero em modelos de TA do Inglês para o Português, uma área ainda pouco explorada em comparação com outros pares de línguas. O foco era desenvolver uma metodologia que preservasse a precisão das traduções, ao mesmo tempo em que promovia a equidade de gênero nos textos gerados. Para isso, a estratégia adotada foi a de aplicar técnicas de ajuste fino (fine-tuning) em um modelo de TA pré-treinado, visando otimizar os parâmetros do modelo para alcançar traduções precisas e reduzir o viés de gênero. A pesquisa desenvolveu um processo de ajuste fino focado na redução do viés, que inclui a criação de um corpus paralelo Inglês-Português equilibrado em relação à representação estereotipada / não estereotipada de gênero. Foi utilizado o modelo de TA pré-treinado MarianMT como base, o qual foi ajustado utilizando um conjunto de dados específico, visando mitigar o viés de gênero nas traduções do Inglês para o Português, sem comprometer demasiadamente a qualidade do modelo original. Os resultados, medidos com base no conjunto de testes WinoMT, determinados pelos indicadores ∆G, ∆S e a acurácia global (preservação do gênero da entidade principal do original), mostraram uma melhoria significativa na equidade de gênero após o emprego do fine-tuning, embora com uma ligeira redução na qualidade da tradução, verificada pela pontuação BLEU (BiLingual Evaluation Understudy). Este estudo não só demonstra a eficácia do fine-tuning para atenuar o viés de gênero em traduções do Inglês para o Português, mas também contribui para a compreensão mais ampla de como abordar este desafio e abre caminhos para futuras pesquisas na área, ressaltando a importância de criar sistemas de inteligência artificial mais inclusivos e eticamente responsáveis.Não recebi financiamentoUniversidade Federal de São PauloBerton, Lilian [UNIFESP]http://lattes.cnpq.br/9064767888093340http://lattes.cnpq.br/8475909935036978Rabonato, Ricardo Trainotti [UNIFESP]2024-04-10T16:10:05Z2024-04-10T16:10:05Z2024-02-26info:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersion102 f.application/pdfhttps://hdl.handle.net/11600/70983porSão José dos Campos, SPinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIFESPinstname:Universidade Federal de São Paulo (UNIFESP)instacron:UNIFESP2024-08-13T22:56:58Zoai:repositorio.unifesp.br/:11600/70983Repositório InstitucionalPUBhttp://www.repositorio.unifesp.br/oai/requestbiblioteca.csp@unifesp.bropendoar:34652024-08-13T22:56:58Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)false |
dc.title.none.fl_str_mv |
Mitigando viés de gênero na tradução automática para o português Mitigating gender bias in machine translation to portuguese |
title |
Mitigando viés de gênero na tradução automática para o português |
spellingShingle |
Mitigando viés de gênero na tradução automática para o português Rabonato, Ricardo Trainotti [UNIFESP] Tradução Automática Viés de Gênero Processamento de Linguagem Natural Fine-Tuning Equidade |
title_short |
Mitigando viés de gênero na tradução automática para o português |
title_full |
Mitigando viés de gênero na tradução automática para o português |
title_fullStr |
Mitigando viés de gênero na tradução automática para o português |
title_full_unstemmed |
Mitigando viés de gênero na tradução automática para o português |
title_sort |
Mitigando viés de gênero na tradução automática para o português |
author |
Rabonato, Ricardo Trainotti [UNIFESP] |
author_facet |
Rabonato, Ricardo Trainotti [UNIFESP] |
author_role |
author |
dc.contributor.none.fl_str_mv |
Berton, Lilian [UNIFESP] http://lattes.cnpq.br/9064767888093340 http://lattes.cnpq.br/8475909935036978 |
dc.contributor.author.fl_str_mv |
Rabonato, Ricardo Trainotti [UNIFESP] |
dc.subject.por.fl_str_mv |
Tradução Automática Viés de Gênero Processamento de Linguagem Natural Fine-Tuning Equidade |
topic |
Tradução Automática Viés de Gênero Processamento de Linguagem Natural Fine-Tuning Equidade |
description |
A Tradução Automática (TA) tornou-se uma ferramenta essencial na era da globalização, facilitando a comunicação e o acesso à informação em diversas línguas. No entanto, a presença de viés em modelos de TA representa um desafio significativo, especialmente em línguas menos populares como o Português. Um dos desafios está relacionado à presença de viés de gênero na tradução, em que estereótipos e desigualdades sociais podem ser inadvertidamente perpetuados. Esta pesquisa se concentra em abordar e mitigar o viés de gênero em modelos de TA do Inglês para o Português, uma área ainda pouco explorada em comparação com outros pares de línguas. O foco era desenvolver uma metodologia que preservasse a precisão das traduções, ao mesmo tempo em que promovia a equidade de gênero nos textos gerados. Para isso, a estratégia adotada foi a de aplicar técnicas de ajuste fino (fine-tuning) em um modelo de TA pré-treinado, visando otimizar os parâmetros do modelo para alcançar traduções precisas e reduzir o viés de gênero. A pesquisa desenvolveu um processo de ajuste fino focado na redução do viés, que inclui a criação de um corpus paralelo Inglês-Português equilibrado em relação à representação estereotipada / não estereotipada de gênero. Foi utilizado o modelo de TA pré-treinado MarianMT como base, o qual foi ajustado utilizando um conjunto de dados específico, visando mitigar o viés de gênero nas traduções do Inglês para o Português, sem comprometer demasiadamente a qualidade do modelo original. Os resultados, medidos com base no conjunto de testes WinoMT, determinados pelos indicadores ∆G, ∆S e a acurácia global (preservação do gênero da entidade principal do original), mostraram uma melhoria significativa na equidade de gênero após o emprego do fine-tuning, embora com uma ligeira redução na qualidade da tradução, verificada pela pontuação BLEU (BiLingual Evaluation Understudy). Este estudo não só demonstra a eficácia do fine-tuning para atenuar o viés de gênero em traduções do Inglês para o Português, mas também contribui para a compreensão mais ampla de como abordar este desafio e abre caminhos para futuras pesquisas na área, ressaltando a importância de criar sistemas de inteligência artificial mais inclusivos e eticamente responsáveis. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-04-10T16:10:05Z 2024-04-10T16:10:05Z 2024-02-26 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/11600/70983 |
url |
https://hdl.handle.net/11600/70983 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
102 f. application/pdf |
dc.coverage.none.fl_str_mv |
São José dos Campos, SP |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Paulo |
publisher.none.fl_str_mv |
Universidade Federal de São Paulo |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNIFESP instname:Universidade Federal de São Paulo (UNIFESP) instacron:UNIFESP |
instname_str |
Universidade Federal de São Paulo (UNIFESP) |
instacron_str |
UNIFESP |
institution |
UNIFESP |
reponame_str |
Repositório Institucional da UNIFESP |
collection |
Repositório Institucional da UNIFESP |
repository.name.fl_str_mv |
Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP) |
repository.mail.fl_str_mv |
biblioteca.csp@unifesp.br |
_version_ |
1814268313438519296 |