Text mining and sentiment analysis applied to Twitter posts about Covid-19 vaccines
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/35490 |
Resumo: | The Covid-19 pandemic is already considered by many scholars to be the biggest health problem of the 21st century and claiming the lives of thousands of people. The speed with the disease spread and changed the lives of the world's population generated a lot of emotions and feelings in people. Since the discovery of the new coronavirus, a race began to develop a vaccine that would be effective to combat the disease, growing the population's desire for its arrival. The work analyzes the feelings that the Brazilian population has developed in relation to vaccines created to combat Covid-19, through the use of sentiment analysis and data mining techniques. The construction of the database took place through the capture of public posts made available by the Twitter API. The algorithm developed during the research is based on the Python programming language and implemented on the Jupyter Notebook platform. The sentiment analysis process was carried out through semantic analysis, using the lexicon dictionary for the Portuguese language SentiLex-PT. |
id |
UNIFEI_59e0a46dbdd245a86e4a12aa8c9ffa57 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/35490 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Text mining and sentiment analysis applied to Twitter posts about Covid-19 vaccinesMinería de texto y análisis de sentimiento aplicado a publicaciones de Twitter sobre vacunas Covid-19Mineração de textos e análise de sentimentos aplicados a postagens do Twitter acerca das vacinas contra a Covid-19PandemiaVacunaCovid-19Extracción de textosAnálisis de los sentimientos.PandemicVaccineCovid-19Text miningSentiment analysis.PandemiaCovid-19VacinaMineração de textosAnálise de sentimentos.The Covid-19 pandemic is already considered by many scholars to be the biggest health problem of the 21st century and claiming the lives of thousands of people. The speed with the disease spread and changed the lives of the world's population generated a lot of emotions and feelings in people. Since the discovery of the new coronavirus, a race began to develop a vaccine that would be effective to combat the disease, growing the population's desire for its arrival. The work analyzes the feelings that the Brazilian population has developed in relation to vaccines created to combat Covid-19, through the use of sentiment analysis and data mining techniques. The construction of the database took place through the capture of public posts made available by the Twitter API. The algorithm developed during the research is based on the Python programming language and implemented on the Jupyter Notebook platform. The sentiment analysis process was carried out through semantic analysis, using the lexicon dictionary for the Portuguese language SentiLex-PT.Muchos académicos ya consideran que la pandemia de Covid-19 es el mayor problema de salud del siglo XXI y se cobra la vida de miles de personas. La velocidad con la que la enfermedad se propagó y cambió la vida de la población mundial generó muchas emociones y sentimientos en las personas. Desde el descubrimiento del nuevo coronavirus se inició una carrera por desarrollar una vacuna que fuera eficaz para combatir la enfermedad, y ha crecido el deseo de la población por su llegada. El trabajo analiza los sentimientos que la población brasileña ha desarrollado en relación a las vacunas creadas para combatir el Covid-19, mediante el uso de técnicas de análisis de sentimiento y minería de datos. La construcción de la base de datos se realizó a través de la captura de publicaciones públicas disponibles a través de la API de Twitter. El algoritmo desarrollado durante la investigación está basado en el lenguaje de programación Python e implementado en la plataforma Jupyter Notebook. El proceso de análisis de sentimiento se llevó a cabo a través del análisis semántico, utilizando el diccionario de léxico para la lengua portuguesa SentiLex-PT.A pandemia da Covid-19 já é considerada por muitos estudiosos o maior problema sanitário do século XXI e ceifando a vida de milhares de pessoas. A rapidez com que a doença se espalhou e modificou a vida da população mundial gerou uma grande quantidade de emoções e sentimentos nas pessoas. Desde a descoberta do novo coronavírus, iniciou-se uma corrida pelo desenvolvimento de uma vacina que fosse eficaz para o combate da doença, crescendo o anseio da população pela sua chegada. O trabalho realiza a análise dos sentimentos que a população brasileira desenvolveu em relação às vacinas criadas para o combate da Covid-19, por meio da utilização das técnicas de análise de sentimento e mineração de dados. A construção do banco de dados ocorreu através da captação de postagens públicas disponibilizadas pela API do Twitter. O algoritmo desenvolvido durante a pesquisa é baseado na linguagem de programação Python e implementado na plataforma Jupyter Notebook. O processo de análise de sentimentos foi realizado através da análise semântica, com uso do dicionário de léxicos para a língua portuguesa SentiLex-PT.Research, Society and Development2022-10-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/3549010.33448/rsd-v11i13.35490Research, Society and Development; Vol. 11 No. 13; e364111335490Research, Society and Development; Vol. 11 Núm. 13; e364111335490Research, Society and Development; v. 11 n. 13; e3641113354902525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/35490/29808Copyright (c) 2022 Franciele Leal Farias; Lorena Sophia Campos de Oliveira https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessFarias, Franciele Leal Oliveira , Lorena Sophia Campos de 2022-10-17T13:43:46Zoai:ojs.pkp.sfu.ca:article/35490Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:50:23.729081Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Text mining and sentiment analysis applied to Twitter posts about Covid-19 vaccines Minería de texto y análisis de sentimiento aplicado a publicaciones de Twitter sobre vacunas Covid-19 Mineração de textos e análise de sentimentos aplicados a postagens do Twitter acerca das vacinas contra a Covid-19 |
title |
Text mining and sentiment analysis applied to Twitter posts about Covid-19 vaccines |
spellingShingle |
Text mining and sentiment analysis applied to Twitter posts about Covid-19 vaccines Farias, Franciele Leal Pandemia Vacuna Covid-19 Extracción de textos Análisis de los sentimientos. Pandemic Vaccine Covid-19 Text mining Sentiment analysis. Pandemia Covid-19 Vacina Mineração de textos Análise de sentimentos. |
title_short |
Text mining and sentiment analysis applied to Twitter posts about Covid-19 vaccines |
title_full |
Text mining and sentiment analysis applied to Twitter posts about Covid-19 vaccines |
title_fullStr |
Text mining and sentiment analysis applied to Twitter posts about Covid-19 vaccines |
title_full_unstemmed |
Text mining and sentiment analysis applied to Twitter posts about Covid-19 vaccines |
title_sort |
Text mining and sentiment analysis applied to Twitter posts about Covid-19 vaccines |
author |
Farias, Franciele Leal |
author_facet |
Farias, Franciele Leal Oliveira , Lorena Sophia Campos de |
author_role |
author |
author2 |
Oliveira , Lorena Sophia Campos de |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Farias, Franciele Leal Oliveira , Lorena Sophia Campos de |
dc.subject.por.fl_str_mv |
Pandemia Vacuna Covid-19 Extracción de textos Análisis de los sentimientos. Pandemic Vaccine Covid-19 Text mining Sentiment analysis. Pandemia Covid-19 Vacina Mineração de textos Análise de sentimentos. |
topic |
Pandemia Vacuna Covid-19 Extracción de textos Análisis de los sentimientos. Pandemic Vaccine Covid-19 Text mining Sentiment analysis. Pandemia Covid-19 Vacina Mineração de textos Análise de sentimentos. |
description |
The Covid-19 pandemic is already considered by many scholars to be the biggest health problem of the 21st century and claiming the lives of thousands of people. The speed with the disease spread and changed the lives of the world's population generated a lot of emotions and feelings in people. Since the discovery of the new coronavirus, a race began to develop a vaccine that would be effective to combat the disease, growing the population's desire for its arrival. The work analyzes the feelings that the Brazilian population has developed in relation to vaccines created to combat Covid-19, through the use of sentiment analysis and data mining techniques. The construction of the database took place through the capture of public posts made available by the Twitter API. The algorithm developed during the research is based on the Python programming language and implemented on the Jupyter Notebook platform. The sentiment analysis process was carried out through semantic analysis, using the lexicon dictionary for the Portuguese language SentiLex-PT. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10-09 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/35490 10.33448/rsd-v11i13.35490 |
url |
https://rsdjournal.org/index.php/rsd/article/view/35490 |
identifier_str_mv |
10.33448/rsd-v11i13.35490 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/35490/29808 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2022 Franciele Leal Farias; Lorena Sophia Campos de Oliveira https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2022 Franciele Leal Farias; Lorena Sophia Campos de Oliveira https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 11 No. 13; e364111335490 Research, Society and Development; Vol. 11 Núm. 13; e364111335490 Research, Society and Development; v. 11 n. 13; e364111335490 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052725078261760 |