Electronic Structure, Morphological Aspects, Optical and Electrochemical Properties of RuO2 Nanocrystals
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s13391-019-00160-9 http://hdl.handle.net/11449/186819 |
Resumo: | This letter reports the synthesis of RuO2 nanocrystals by the anionic surfactant-assisted hydrothermal method at 90 degrees C for 24 h followed by heat treatment at 500 degrees C for 1 h. These crystals were structurally characterized by means of X-ray diffraction (XRD) and Rietveld refinement analysis. Field emission scanning electron microscopy (FE-SEM) was employed to observe the morphological features these crystals. The optical behavior was investigated by ultraviolet-visible (UV-Vis) spectroscopy. First-principles quantum mechanical calculations based on the density functional theory at the B3LYP level were employed to obtain the electronic band structure and density of states. For electrochemical behavior, the supercapacitor properties of RuO2 crystals were investigated by cyclic voltammetry. XRD patterns and Rietveld refinement data indicate that RuO2 crystals have a rutile-type tetragonal structure. FE-SEM images showed the presence of sphere-like RuO2 crystals with an average crystal sized at around 19.13 nm. The experimental band gap energy (E-gap[exp]) was estimated at 2.60 eV by using UV-Vis spectroscopy, while the theoretical calculations indicate an E-gap[theo] at 1.92 eV. These calculations revealed a band structure predominantly composed of O 2p orbitals (valence band) and Ru 4d orbitals (conduction band). The specific capacitance measured for RuO2 film was 193 F g(-1) at 5 mV s(-1) in an electrode with 0.5 mg of electroactive material in 1 M Na2SO4 solution. Graphic For the first time, we report on the electronic structure, optical and electrochemical behavior of RuO2 nanocrystals/film synthesized by the anionic surfactant-assisted hydrothermal synthesis (90 degrees C for 24 h) followed by heat treatment (500 degrees C for 1 h). |
id |
UNSP_28a73b0513244062dd5b4f57bfc0ab45 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/186819 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Electronic Structure, Morphological Aspects, Optical and Electrochemical Properties of RuO2 NanocrystalsRuO2NanocrystalsRietveld refinementOptical band gapBand structureCapacitanceThis letter reports the synthesis of RuO2 nanocrystals by the anionic surfactant-assisted hydrothermal method at 90 degrees C for 24 h followed by heat treatment at 500 degrees C for 1 h. These crystals were structurally characterized by means of X-ray diffraction (XRD) and Rietveld refinement analysis. Field emission scanning electron microscopy (FE-SEM) was employed to observe the morphological features these crystals. The optical behavior was investigated by ultraviolet-visible (UV-Vis) spectroscopy. First-principles quantum mechanical calculations based on the density functional theory at the B3LYP level were employed to obtain the electronic band structure and density of states. For electrochemical behavior, the supercapacitor properties of RuO2 crystals were investigated by cyclic voltammetry. XRD patterns and Rietveld refinement data indicate that RuO2 crystals have a rutile-type tetragonal structure. FE-SEM images showed the presence of sphere-like RuO2 crystals with an average crystal sized at around 19.13 nm. The experimental band gap energy (E-gap[exp]) was estimated at 2.60 eV by using UV-Vis spectroscopy, while the theoretical calculations indicate an E-gap[theo] at 1.92 eV. These calculations revealed a band structure predominantly composed of O 2p orbitals (valence band) and Ru 4d orbitals (conduction band). The specific capacitance measured for RuO2 film was 193 F g(-1) at 5 mV s(-1) in an electrode with 0.5 mg of electroactive material in 1 M Na2SO4 solution. Graphic For the first time, we report on the electronic structure, optical and electrochemical behavior of RuO2 nanocrystals/film synthesized by the anionic surfactant-assisted hydrothermal synthesis (90 degrees C for 24 h) followed by heat treatment (500 degrees C for 1 h).Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Brazilian research financing institution FAPEPIFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Estadual Piaui, PPGQ, Rua Joao Cabral 2231,POB 381, BR-64002150 Teresina, PI, BrazilUniv Fed Piaui, Programa Posgrad Ciencia Mat PPCM, BR-64049550 Teresina, PI, BrazilUniv Fed Sao Carlos, CDMF, POB 676, BR-13565905 Sao Carlos, SP, BrazilUniv Estadual Paulista, CDMF, POB 355, BR-14801907 Araraquara, SP, BrazilUniv Estadual Paulista, CDMF, POB 355, BR-14801907 Araraquara, SP, BrazilCNPq: 350711/2012-7CNPq: 150949/2018-9CNPq: 312318/2017-0CNPq: 408036/2018-4FAPESP: 2012/14004-5Korean Inst Metals MaterialsUniv Estadual PiauiUniv Fed PiauiUniversidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Silva, R. C.Gouveia, A. F.Sczancoski, J. C.Santos, R. S.Sa, J. L. S.Longo, E. [UNESP]Cavalcante, L. S.2019-10-06T07:12:01Z2019-10-06T07:12:01Z2019-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article645-653http://dx.doi.org/10.1007/s13391-019-00160-9Electronic Materials Letters. Seoul: Korean Inst Metals Materials, v. 15, n. 5, p. 645-653, 2019.1738-8090http://hdl.handle.net/11449/18681910.1007/s13391-019-00160-9WOS:000479092400014Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengElectronic Materials Lettersinfo:eu-repo/semantics/openAccess2021-10-22T18:56:43Zoai:repositorio.unesp.br:11449/186819Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:29:15.712976Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Electronic Structure, Morphological Aspects, Optical and Electrochemical Properties of RuO2 Nanocrystals |
title |
Electronic Structure, Morphological Aspects, Optical and Electrochemical Properties of RuO2 Nanocrystals |
spellingShingle |
Electronic Structure, Morphological Aspects, Optical and Electrochemical Properties of RuO2 Nanocrystals Silva, R. C. RuO2 Nanocrystals Rietveld refinement Optical band gap Band structure Capacitance |
title_short |
Electronic Structure, Morphological Aspects, Optical and Electrochemical Properties of RuO2 Nanocrystals |
title_full |
Electronic Structure, Morphological Aspects, Optical and Electrochemical Properties of RuO2 Nanocrystals |
title_fullStr |
Electronic Structure, Morphological Aspects, Optical and Electrochemical Properties of RuO2 Nanocrystals |
title_full_unstemmed |
Electronic Structure, Morphological Aspects, Optical and Electrochemical Properties of RuO2 Nanocrystals |
title_sort |
Electronic Structure, Morphological Aspects, Optical and Electrochemical Properties of RuO2 Nanocrystals |
author |
Silva, R. C. |
author_facet |
Silva, R. C. Gouveia, A. F. Sczancoski, J. C. Santos, R. S. Sa, J. L. S. Longo, E. [UNESP] Cavalcante, L. S. |
author_role |
author |
author2 |
Gouveia, A. F. Sczancoski, J. C. Santos, R. S. Sa, J. L. S. Longo, E. [UNESP] Cavalcante, L. S. |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Univ Estadual Piaui Univ Fed Piaui Universidade Federal de São Carlos (UFSCar) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Silva, R. C. Gouveia, A. F. Sczancoski, J. C. Santos, R. S. Sa, J. L. S. Longo, E. [UNESP] Cavalcante, L. S. |
dc.subject.por.fl_str_mv |
RuO2 Nanocrystals Rietveld refinement Optical band gap Band structure Capacitance |
topic |
RuO2 Nanocrystals Rietveld refinement Optical band gap Band structure Capacitance |
description |
This letter reports the synthesis of RuO2 nanocrystals by the anionic surfactant-assisted hydrothermal method at 90 degrees C for 24 h followed by heat treatment at 500 degrees C for 1 h. These crystals were structurally characterized by means of X-ray diffraction (XRD) and Rietveld refinement analysis. Field emission scanning electron microscopy (FE-SEM) was employed to observe the morphological features these crystals. The optical behavior was investigated by ultraviolet-visible (UV-Vis) spectroscopy. First-principles quantum mechanical calculations based on the density functional theory at the B3LYP level were employed to obtain the electronic band structure and density of states. For electrochemical behavior, the supercapacitor properties of RuO2 crystals were investigated by cyclic voltammetry. XRD patterns and Rietveld refinement data indicate that RuO2 crystals have a rutile-type tetragonal structure. FE-SEM images showed the presence of sphere-like RuO2 crystals with an average crystal sized at around 19.13 nm. The experimental band gap energy (E-gap[exp]) was estimated at 2.60 eV by using UV-Vis spectroscopy, while the theoretical calculations indicate an E-gap[theo] at 1.92 eV. These calculations revealed a band structure predominantly composed of O 2p orbitals (valence band) and Ru 4d orbitals (conduction band). The specific capacitance measured for RuO2 film was 193 F g(-1) at 5 mV s(-1) in an electrode with 0.5 mg of electroactive material in 1 M Na2SO4 solution. Graphic For the first time, we report on the electronic structure, optical and electrochemical behavior of RuO2 nanocrystals/film synthesized by the anionic surfactant-assisted hydrothermal synthesis (90 degrees C for 24 h) followed by heat treatment (500 degrees C for 1 h). |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-06T07:12:01Z 2019-10-06T07:12:01Z 2019-09-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s13391-019-00160-9 Electronic Materials Letters. Seoul: Korean Inst Metals Materials, v. 15, n. 5, p. 645-653, 2019. 1738-8090 http://hdl.handle.net/11449/186819 10.1007/s13391-019-00160-9 WOS:000479092400014 |
url |
http://dx.doi.org/10.1007/s13391-019-00160-9 http://hdl.handle.net/11449/186819 |
identifier_str_mv |
Electronic Materials Letters. Seoul: Korean Inst Metals Materials, v. 15, n. 5, p. 645-653, 2019. 1738-8090 10.1007/s13391-019-00160-9 WOS:000479092400014 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Electronic Materials Letters |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
645-653 |
dc.publisher.none.fl_str_mv |
Korean Inst Metals Materials |
publisher.none.fl_str_mv |
Korean Inst Metals Materials |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128659121242112 |