Visual approach to support analysis of optimum-path forest classifier

Detalhes bibliográficos
Autor(a) principal: Eler, Danilo Medeiros [UNESP]
Data de Publicação: 2019
Outros Autores: Batista, Matheus Prachedes [UNESP], Garcia, Rogério Eduardo [UNESP], Pereira, Danillo Roberto, Marcilio, Wilson Estecio [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/BRACIS.2019.00139
http://hdl.handle.net/11449/201429
Resumo: Optimum-path forest (OPF) is a graph based classifier in which the training process computes optimum-path trees rooted by prototype instances. Thus, one or more optimum-path trees represent each class and the testing process is based on identifying which optimum-path tree would contain a test sample. Usually, OPF performance is analyzed based on measures computed from training and testing process, such as f-score and correct classification rate (accuracy). This paper proposes an approach based on visualization to support understanding of OPF training and testing processes. The visual approach uses multidimensional projection techniques to reduce the feature space dimensionality and to generate graphical representation from instances similarities. As a result, one can visualize, analyze and understand each step of OPF classifier: generation of the minimum-spanning tree, prototypes choosing, computation of optimum-path trees, and test samples classification. The experiments show that our approach is useful to understand how the prototypes are chosen, to identify what are the best prototypes, to visualize how the training dataset size influences the OPF performance, to analyze how a weak feature space can impact the OPF performance, and to identify some insights about OPF classifier as a whole.
id UNSP_3b3359aa12466d8b9ba1a1294779a750
oai_identifier_str oai:repositorio.unesp.br:11449/201429
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Visual approach to support analysis of optimum-path forest classifierExplainable artificial intelligenceMultidimensional projectionOptimum-path forestVisualization assisted machine learningOptimum-path forest (OPF) is a graph based classifier in which the training process computes optimum-path trees rooted by prototype instances. Thus, one or more optimum-path trees represent each class and the testing process is based on identifying which optimum-path tree would contain a test sample. Usually, OPF performance is analyzed based on measures computed from training and testing process, such as f-score and correct classification rate (accuracy). This paper proposes an approach based on visualization to support understanding of OPF training and testing processes. The visual approach uses multidimensional projection techniques to reduce the feature space dimensionality and to generate graphical representation from instances similarities. As a result, one can visualize, analyze and understand each step of OPF classifier: generation of the minimum-spanning tree, prototypes choosing, computation of optimum-path trees, and test samples classification. The experiments show that our approach is useful to understand how the prototypes are chosen, to identify what are the best prototypes, to visualize how the training dataset size influences the OPF performance, to analyze how a weak feature space can impact the OPF performance, and to identify some insights about OPF classifier as a whole.São Paulo State University (UNESP)Universidade Do Oeste Paulista (UNOESTE)São Paulo State University (UNESP)Universidade Estadual Paulista (Unesp)Universidade Do Oeste Paulista (UNOESTE)Eler, Danilo Medeiros [UNESP]Batista, Matheus Prachedes [UNESP]Garcia, Rogério Eduardo [UNESP]Pereira, Danillo RobertoMarcilio, Wilson Estecio [UNESP]2020-12-12T02:32:20Z2020-12-12T02:32:20Z2019-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject777-782http://dx.doi.org/10.1109/BRACIS.2019.00139Proceedings - 2019 Brazilian Conference on Intelligent Systems, BRACIS 2019, p. 777-782.http://hdl.handle.net/11449/20142910.1109/BRACIS.2019.001392-s2.0-8507704090280310125732593610000-0003-1248-528XScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings - 2019 Brazilian Conference on Intelligent Systems, BRACIS 2019info:eu-repo/semantics/openAccess2024-06-19T14:32:17Zoai:repositorio.unesp.br:11449/201429Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:09:47.360390Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Visual approach to support analysis of optimum-path forest classifier
title Visual approach to support analysis of optimum-path forest classifier
spellingShingle Visual approach to support analysis of optimum-path forest classifier
Eler, Danilo Medeiros [UNESP]
Explainable artificial intelligence
Multidimensional projection
Optimum-path forest
Visualization assisted machine learning
title_short Visual approach to support analysis of optimum-path forest classifier
title_full Visual approach to support analysis of optimum-path forest classifier
title_fullStr Visual approach to support analysis of optimum-path forest classifier
title_full_unstemmed Visual approach to support analysis of optimum-path forest classifier
title_sort Visual approach to support analysis of optimum-path forest classifier
author Eler, Danilo Medeiros [UNESP]
author_facet Eler, Danilo Medeiros [UNESP]
Batista, Matheus Prachedes [UNESP]
Garcia, Rogério Eduardo [UNESP]
Pereira, Danillo Roberto
Marcilio, Wilson Estecio [UNESP]
author_role author
author2 Batista, Matheus Prachedes [UNESP]
Garcia, Rogério Eduardo [UNESP]
Pereira, Danillo Roberto
Marcilio, Wilson Estecio [UNESP]
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Do Oeste Paulista (UNOESTE)
dc.contributor.author.fl_str_mv Eler, Danilo Medeiros [UNESP]
Batista, Matheus Prachedes [UNESP]
Garcia, Rogério Eduardo [UNESP]
Pereira, Danillo Roberto
Marcilio, Wilson Estecio [UNESP]
dc.subject.por.fl_str_mv Explainable artificial intelligence
Multidimensional projection
Optimum-path forest
Visualization assisted machine learning
topic Explainable artificial intelligence
Multidimensional projection
Optimum-path forest
Visualization assisted machine learning
description Optimum-path forest (OPF) is a graph based classifier in which the training process computes optimum-path trees rooted by prototype instances. Thus, one or more optimum-path trees represent each class and the testing process is based on identifying which optimum-path tree would contain a test sample. Usually, OPF performance is analyzed based on measures computed from training and testing process, such as f-score and correct classification rate (accuracy). This paper proposes an approach based on visualization to support understanding of OPF training and testing processes. The visual approach uses multidimensional projection techniques to reduce the feature space dimensionality and to generate graphical representation from instances similarities. As a result, one can visualize, analyze and understand each step of OPF classifier: generation of the minimum-spanning tree, prototypes choosing, computation of optimum-path trees, and test samples classification. The experiments show that our approach is useful to understand how the prototypes are chosen, to identify what are the best prototypes, to visualize how the training dataset size influences the OPF performance, to analyze how a weak feature space can impact the OPF performance, and to identify some insights about OPF classifier as a whole.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-01
2020-12-12T02:32:20Z
2020-12-12T02:32:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/BRACIS.2019.00139
Proceedings - 2019 Brazilian Conference on Intelligent Systems, BRACIS 2019, p. 777-782.
http://hdl.handle.net/11449/201429
10.1109/BRACIS.2019.00139
2-s2.0-85077040902
8031012573259361
0000-0003-1248-528X
url http://dx.doi.org/10.1109/BRACIS.2019.00139
http://hdl.handle.net/11449/201429
identifier_str_mv Proceedings - 2019 Brazilian Conference on Intelligent Systems, BRACIS 2019, p. 777-782.
10.1109/BRACIS.2019.00139
2-s2.0-85077040902
8031012573259361
0000-0003-1248-528X
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Proceedings - 2019 Brazilian Conference on Intelligent Systems, BRACIS 2019
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 777-782
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128470412165120