Visual approach to support analysis of optimum-path forest classifier
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/BRACIS.2019.00139 http://hdl.handle.net/11449/201429 |
Resumo: | Optimum-path forest (OPF) is a graph based classifier in which the training process computes optimum-path trees rooted by prototype instances. Thus, one or more optimum-path trees represent each class and the testing process is based on identifying which optimum-path tree would contain a test sample. Usually, OPF performance is analyzed based on measures computed from training and testing process, such as f-score and correct classification rate (accuracy). This paper proposes an approach based on visualization to support understanding of OPF training and testing processes. The visual approach uses multidimensional projection techniques to reduce the feature space dimensionality and to generate graphical representation from instances similarities. As a result, one can visualize, analyze and understand each step of OPF classifier: generation of the minimum-spanning tree, prototypes choosing, computation of optimum-path trees, and test samples classification. The experiments show that our approach is useful to understand how the prototypes are chosen, to identify what are the best prototypes, to visualize how the training dataset size influences the OPF performance, to analyze how a weak feature space can impact the OPF performance, and to identify some insights about OPF classifier as a whole. |
id |
UNSP_3b3359aa12466d8b9ba1a1294779a750 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/201429 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Visual approach to support analysis of optimum-path forest classifierExplainable artificial intelligenceMultidimensional projectionOptimum-path forestVisualization assisted machine learningOptimum-path forest (OPF) is a graph based classifier in which the training process computes optimum-path trees rooted by prototype instances. Thus, one or more optimum-path trees represent each class and the testing process is based on identifying which optimum-path tree would contain a test sample. Usually, OPF performance is analyzed based on measures computed from training and testing process, such as f-score and correct classification rate (accuracy). This paper proposes an approach based on visualization to support understanding of OPF training and testing processes. The visual approach uses multidimensional projection techniques to reduce the feature space dimensionality and to generate graphical representation from instances similarities. As a result, one can visualize, analyze and understand each step of OPF classifier: generation of the minimum-spanning tree, prototypes choosing, computation of optimum-path trees, and test samples classification. The experiments show that our approach is useful to understand how the prototypes are chosen, to identify what are the best prototypes, to visualize how the training dataset size influences the OPF performance, to analyze how a weak feature space can impact the OPF performance, and to identify some insights about OPF classifier as a whole.São Paulo State University (UNESP)Universidade Do Oeste Paulista (UNOESTE)São Paulo State University (UNESP)Universidade Estadual Paulista (Unesp)Universidade Do Oeste Paulista (UNOESTE)Eler, Danilo Medeiros [UNESP]Batista, Matheus Prachedes [UNESP]Garcia, Rogério Eduardo [UNESP]Pereira, Danillo RobertoMarcilio, Wilson Estecio [UNESP]2020-12-12T02:32:20Z2020-12-12T02:32:20Z2019-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject777-782http://dx.doi.org/10.1109/BRACIS.2019.00139Proceedings - 2019 Brazilian Conference on Intelligent Systems, BRACIS 2019, p. 777-782.http://hdl.handle.net/11449/20142910.1109/BRACIS.2019.001392-s2.0-8507704090280310125732593610000-0003-1248-528XScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings - 2019 Brazilian Conference on Intelligent Systems, BRACIS 2019info:eu-repo/semantics/openAccess2024-06-19T14:32:17Zoai:repositorio.unesp.br:11449/201429Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:09:47.360390Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Visual approach to support analysis of optimum-path forest classifier |
title |
Visual approach to support analysis of optimum-path forest classifier |
spellingShingle |
Visual approach to support analysis of optimum-path forest classifier Eler, Danilo Medeiros [UNESP] Explainable artificial intelligence Multidimensional projection Optimum-path forest Visualization assisted machine learning |
title_short |
Visual approach to support analysis of optimum-path forest classifier |
title_full |
Visual approach to support analysis of optimum-path forest classifier |
title_fullStr |
Visual approach to support analysis of optimum-path forest classifier |
title_full_unstemmed |
Visual approach to support analysis of optimum-path forest classifier |
title_sort |
Visual approach to support analysis of optimum-path forest classifier |
author |
Eler, Danilo Medeiros [UNESP] |
author_facet |
Eler, Danilo Medeiros [UNESP] Batista, Matheus Prachedes [UNESP] Garcia, Rogério Eduardo [UNESP] Pereira, Danillo Roberto Marcilio, Wilson Estecio [UNESP] |
author_role |
author |
author2 |
Batista, Matheus Prachedes [UNESP] Garcia, Rogério Eduardo [UNESP] Pereira, Danillo Roberto Marcilio, Wilson Estecio [UNESP] |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Do Oeste Paulista (UNOESTE) |
dc.contributor.author.fl_str_mv |
Eler, Danilo Medeiros [UNESP] Batista, Matheus Prachedes [UNESP] Garcia, Rogério Eduardo [UNESP] Pereira, Danillo Roberto Marcilio, Wilson Estecio [UNESP] |
dc.subject.por.fl_str_mv |
Explainable artificial intelligence Multidimensional projection Optimum-path forest Visualization assisted machine learning |
topic |
Explainable artificial intelligence Multidimensional projection Optimum-path forest Visualization assisted machine learning |
description |
Optimum-path forest (OPF) is a graph based classifier in which the training process computes optimum-path trees rooted by prototype instances. Thus, one or more optimum-path trees represent each class and the testing process is based on identifying which optimum-path tree would contain a test sample. Usually, OPF performance is analyzed based on measures computed from training and testing process, such as f-score and correct classification rate (accuracy). This paper proposes an approach based on visualization to support understanding of OPF training and testing processes. The visual approach uses multidimensional projection techniques to reduce the feature space dimensionality and to generate graphical representation from instances similarities. As a result, one can visualize, analyze and understand each step of OPF classifier: generation of the minimum-spanning tree, prototypes choosing, computation of optimum-path trees, and test samples classification. The experiments show that our approach is useful to understand how the prototypes are chosen, to identify what are the best prototypes, to visualize how the training dataset size influences the OPF performance, to analyze how a weak feature space can impact the OPF performance, and to identify some insights about OPF classifier as a whole. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-01 2020-12-12T02:32:20Z 2020-12-12T02:32:20Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/BRACIS.2019.00139 Proceedings - 2019 Brazilian Conference on Intelligent Systems, BRACIS 2019, p. 777-782. http://hdl.handle.net/11449/201429 10.1109/BRACIS.2019.00139 2-s2.0-85077040902 8031012573259361 0000-0003-1248-528X |
url |
http://dx.doi.org/10.1109/BRACIS.2019.00139 http://hdl.handle.net/11449/201429 |
identifier_str_mv |
Proceedings - 2019 Brazilian Conference on Intelligent Systems, BRACIS 2019, p. 777-782. 10.1109/BRACIS.2019.00139 2-s2.0-85077040902 8031012573259361 0000-0003-1248-528X |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings - 2019 Brazilian Conference on Intelligent Systems, BRACIS 2019 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
777-782 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128470412165120 |