Zero-Hopf bifurcation in a Chua system

Detalhes bibliográficos
Autor(a) principal: Euzébio, Rodrigo D. [UNESP]
Data de Publicação: 2017
Outros Autores: Llibre, Jaume
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.nonrwa.2017.02.002
http://hdl.handle.net/11449/174285
Resumo: A zero-Hopf equilibrium is an isolated equilibrium point whose eigenvalues are ±ωi≠0 and 0. In general for a such equilibrium there is no theory for knowing when it bifurcates some small-amplitude limit cycles moving the parameters of the system. Here we study the zero-Hopf bifurcation using the averaging theory. We apply this theory to a Chua system depending on 6 parameters, but the way followed for studying the zero-Hopf bifurcation can be applied to any other differential system in dimension 3 or higher. In this paper first we show that there are three 4-parameter families of Chua systems exhibiting a zero-Hopf equilibrium. After, by using the averaging theory, we provide sufficient conditions for the bifurcation of limit cycles from these families of zero-Hopf equilibria. From one family we can prove that 1 limit cycle bifurcates, and from the other two families we can prove that 1, 2 or 3 limit cycles bifurcate simultaneously.
id UNSP_4064fd8937c1069ed9cce80cdd177557
oai_identifier_str oai:repositorio.unesp.br:11449/174285
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Zero-Hopf bifurcation in a Chua systemAveraging theoryChua systemPeriodic orbitZero Hopf bifurcationA zero-Hopf equilibrium is an isolated equilibrium point whose eigenvalues are ±ωi≠0 and 0. In general for a such equilibrium there is no theory for knowing when it bifurcates some small-amplitude limit cycles moving the parameters of the system. Here we study the zero-Hopf bifurcation using the averaging theory. We apply this theory to a Chua system depending on 6 parameters, but the way followed for studying the zero-Hopf bifurcation can be applied to any other differential system in dimension 3 or higher. In this paper first we show that there are three 4-parameter families of Chua systems exhibiting a zero-Hopf equilibrium. After, by using the averaging theory, we provide sufficient conditions for the bifurcation of limit cycles from these families of zero-Hopf equilibria. From one family we can prove that 1 limit cycle bifurcates, and from the other two families we can prove that 1, 2 or 3 limit cycles bifurcate simultaneously.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Departament de Matemática IBILCE UNESP, Rua Cristovao Colombo 2265, Jardim Nazareth, CEP 15.054-00Departament de Matemàtiques Universitat Autònoma de Barcelona, 08193 BellaterraDepartament de Matemática IBILCE UNESP, Rua Cristovao Colombo 2265, Jardim Nazareth, CEP 15.054-00CAPES: 88881Universidade Estadual Paulista (Unesp)Universitat Autònoma de BarcelonaEuzébio, Rodrigo D. [UNESP]Llibre, Jaume2018-12-11T17:10:16Z2018-12-11T17:10:16Z2017-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article31-40application/pdfhttp://dx.doi.org/10.1016/j.nonrwa.2017.02.002Nonlinear Analysis: Real World Applications, v. 37, p. 31-40.1468-1218http://hdl.handle.net/11449/17428510.1016/j.nonrwa.2017.02.0022-s2.0-850143126612-s2.0-85014312661.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNonlinear Analysis: Real World Applications1,627info:eu-repo/semantics/openAccess2023-12-22T06:18:59Zoai:repositorio.unesp.br:11449/174285Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:57:55.053787Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Zero-Hopf bifurcation in a Chua system
title Zero-Hopf bifurcation in a Chua system
spellingShingle Zero-Hopf bifurcation in a Chua system
Euzébio, Rodrigo D. [UNESP]
Averaging theory
Chua system
Periodic orbit
Zero Hopf bifurcation
title_short Zero-Hopf bifurcation in a Chua system
title_full Zero-Hopf bifurcation in a Chua system
title_fullStr Zero-Hopf bifurcation in a Chua system
title_full_unstemmed Zero-Hopf bifurcation in a Chua system
title_sort Zero-Hopf bifurcation in a Chua system
author Euzébio, Rodrigo D. [UNESP]
author_facet Euzébio, Rodrigo D. [UNESP]
Llibre, Jaume
author_role author
author2 Llibre, Jaume
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universitat Autònoma de Barcelona
dc.contributor.author.fl_str_mv Euzébio, Rodrigo D. [UNESP]
Llibre, Jaume
dc.subject.por.fl_str_mv Averaging theory
Chua system
Periodic orbit
Zero Hopf bifurcation
topic Averaging theory
Chua system
Periodic orbit
Zero Hopf bifurcation
description A zero-Hopf equilibrium is an isolated equilibrium point whose eigenvalues are ±ωi≠0 and 0. In general for a such equilibrium there is no theory for knowing when it bifurcates some small-amplitude limit cycles moving the parameters of the system. Here we study the zero-Hopf bifurcation using the averaging theory. We apply this theory to a Chua system depending on 6 parameters, but the way followed for studying the zero-Hopf bifurcation can be applied to any other differential system in dimension 3 or higher. In this paper first we show that there are three 4-parameter families of Chua systems exhibiting a zero-Hopf equilibrium. After, by using the averaging theory, we provide sufficient conditions for the bifurcation of limit cycles from these families of zero-Hopf equilibria. From one family we can prove that 1 limit cycle bifurcates, and from the other two families we can prove that 1, 2 or 3 limit cycles bifurcate simultaneously.
publishDate 2017
dc.date.none.fl_str_mv 2017-10-01
2018-12-11T17:10:16Z
2018-12-11T17:10:16Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.nonrwa.2017.02.002
Nonlinear Analysis: Real World Applications, v. 37, p. 31-40.
1468-1218
http://hdl.handle.net/11449/174285
10.1016/j.nonrwa.2017.02.002
2-s2.0-85014312661
2-s2.0-85014312661.pdf
url http://dx.doi.org/10.1016/j.nonrwa.2017.02.002
http://hdl.handle.net/11449/174285
identifier_str_mv Nonlinear Analysis: Real World Applications, v. 37, p. 31-40.
1468-1218
10.1016/j.nonrwa.2017.02.002
2-s2.0-85014312661
2-s2.0-85014312661.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Nonlinear Analysis: Real World Applications
1,627
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 31-40
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129268889157632