Zero-Hopf bifurcation in a Chua system
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.nonrwa.2017.02.002 http://hdl.handle.net/11449/174285 |
Resumo: | A zero-Hopf equilibrium is an isolated equilibrium point whose eigenvalues are ±ωi≠0 and 0. In general for a such equilibrium there is no theory for knowing when it bifurcates some small-amplitude limit cycles moving the parameters of the system. Here we study the zero-Hopf bifurcation using the averaging theory. We apply this theory to a Chua system depending on 6 parameters, but the way followed for studying the zero-Hopf bifurcation can be applied to any other differential system in dimension 3 or higher. In this paper first we show that there are three 4-parameter families of Chua systems exhibiting a zero-Hopf equilibrium. After, by using the averaging theory, we provide sufficient conditions for the bifurcation of limit cycles from these families of zero-Hopf equilibria. From one family we can prove that 1 limit cycle bifurcates, and from the other two families we can prove that 1, 2 or 3 limit cycles bifurcate simultaneously. |
id |
UNSP_4064fd8937c1069ed9cce80cdd177557 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/174285 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Zero-Hopf bifurcation in a Chua systemAveraging theoryChua systemPeriodic orbitZero Hopf bifurcationA zero-Hopf equilibrium is an isolated equilibrium point whose eigenvalues are ±ωi≠0 and 0. In general for a such equilibrium there is no theory for knowing when it bifurcates some small-amplitude limit cycles moving the parameters of the system. Here we study the zero-Hopf bifurcation using the averaging theory. We apply this theory to a Chua system depending on 6 parameters, but the way followed for studying the zero-Hopf bifurcation can be applied to any other differential system in dimension 3 or higher. In this paper first we show that there are three 4-parameter families of Chua systems exhibiting a zero-Hopf equilibrium. After, by using the averaging theory, we provide sufficient conditions for the bifurcation of limit cycles from these families of zero-Hopf equilibria. From one family we can prove that 1 limit cycle bifurcates, and from the other two families we can prove that 1, 2 or 3 limit cycles bifurcate simultaneously.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Departament de Matemática IBILCE UNESP, Rua Cristovao Colombo 2265, Jardim Nazareth, CEP 15.054-00Departament de Matemàtiques Universitat Autònoma de Barcelona, 08193 BellaterraDepartament de Matemática IBILCE UNESP, Rua Cristovao Colombo 2265, Jardim Nazareth, CEP 15.054-00CAPES: 88881Universidade Estadual Paulista (Unesp)Universitat Autònoma de BarcelonaEuzébio, Rodrigo D. [UNESP]Llibre, Jaume2018-12-11T17:10:16Z2018-12-11T17:10:16Z2017-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article31-40application/pdfhttp://dx.doi.org/10.1016/j.nonrwa.2017.02.002Nonlinear Analysis: Real World Applications, v. 37, p. 31-40.1468-1218http://hdl.handle.net/11449/17428510.1016/j.nonrwa.2017.02.0022-s2.0-850143126612-s2.0-85014312661.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNonlinear Analysis: Real World Applications1,627info:eu-repo/semantics/openAccess2023-12-22T06:18:59Zoai:repositorio.unesp.br:11449/174285Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:57:55.053787Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Zero-Hopf bifurcation in a Chua system |
title |
Zero-Hopf bifurcation in a Chua system |
spellingShingle |
Zero-Hopf bifurcation in a Chua system Euzébio, Rodrigo D. [UNESP] Averaging theory Chua system Periodic orbit Zero Hopf bifurcation |
title_short |
Zero-Hopf bifurcation in a Chua system |
title_full |
Zero-Hopf bifurcation in a Chua system |
title_fullStr |
Zero-Hopf bifurcation in a Chua system |
title_full_unstemmed |
Zero-Hopf bifurcation in a Chua system |
title_sort |
Zero-Hopf bifurcation in a Chua system |
author |
Euzébio, Rodrigo D. [UNESP] |
author_facet |
Euzébio, Rodrigo D. [UNESP] Llibre, Jaume |
author_role |
author |
author2 |
Llibre, Jaume |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universitat Autònoma de Barcelona |
dc.contributor.author.fl_str_mv |
Euzébio, Rodrigo D. [UNESP] Llibre, Jaume |
dc.subject.por.fl_str_mv |
Averaging theory Chua system Periodic orbit Zero Hopf bifurcation |
topic |
Averaging theory Chua system Periodic orbit Zero Hopf bifurcation |
description |
A zero-Hopf equilibrium is an isolated equilibrium point whose eigenvalues are ±ωi≠0 and 0. In general for a such equilibrium there is no theory for knowing when it bifurcates some small-amplitude limit cycles moving the parameters of the system. Here we study the zero-Hopf bifurcation using the averaging theory. We apply this theory to a Chua system depending on 6 parameters, but the way followed for studying the zero-Hopf bifurcation can be applied to any other differential system in dimension 3 or higher. In this paper first we show that there are three 4-parameter families of Chua systems exhibiting a zero-Hopf equilibrium. After, by using the averaging theory, we provide sufficient conditions for the bifurcation of limit cycles from these families of zero-Hopf equilibria. From one family we can prove that 1 limit cycle bifurcates, and from the other two families we can prove that 1, 2 or 3 limit cycles bifurcate simultaneously. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10-01 2018-12-11T17:10:16Z 2018-12-11T17:10:16Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.nonrwa.2017.02.002 Nonlinear Analysis: Real World Applications, v. 37, p. 31-40. 1468-1218 http://hdl.handle.net/11449/174285 10.1016/j.nonrwa.2017.02.002 2-s2.0-85014312661 2-s2.0-85014312661.pdf |
url |
http://dx.doi.org/10.1016/j.nonrwa.2017.02.002 http://hdl.handle.net/11449/174285 |
identifier_str_mv |
Nonlinear Analysis: Real World Applications, v. 37, p. 31-40. 1468-1218 10.1016/j.nonrwa.2017.02.002 2-s2.0-85014312661 2-s2.0-85014312661.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Nonlinear Analysis: Real World Applications 1,627 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
31-40 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129268889157632 |