A block-based Markov random field model estimation for contextual classification using Optimum-Path Forest
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/ISCAS.2016.7527410 http://hdl.handle.net/11449/234505 |
Resumo: | Contextual image classification aims at considering the information about nearby samples in the learning process in order to provide more accurate results. In this paper, we propose a locally-adaptive Optimum-Path Forest classifier together with Markov Random Fields (MRF) that surpasses its naïve version, which was recently presented in the literature. The experimental results over four satellite images demonstrated the proposed approach an outperform previous results, as well as it can perform MRF parameter learning much faster than its former version. |
id |
UNSP_976ddc15c692485f8567495434b0dc0f |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/234505 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A block-based Markov random field model estimation for contextual classification using Optimum-Path ForestLandcover ClassificationOptimum-Path ForestPattern ClassificationContextual image classification aims at considering the information about nearby samples in the learning process in order to provide more accurate results. In this paper, we propose a locally-adaptive Optimum-Path Forest classifier together with Markov Random Fields (MRF) that surpasses its naïve version, which was recently presented in the literature. The experimental results over four satellite images demonstrated the proposed approach an outperform previous results, as well as it can perform MRF parameter learning much faster than its former version.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Department of Computer Science Federal University of São CarlosDepartment of Computing São Paulo State UniversityDepartment of Computing São Paulo State UniversityFAPESP: 2012/06472-9FAPESP: 2014/16250-9FAPESP: 2015/50319-9Universidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (UNESP)Osaku, DanielLevada, Alexandre L.M.Papa, Joao Paulo [UNESP]2022-05-02T20:23:59Z2022-05-02T20:23:59Z2016-07-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject994-997http://dx.doi.org/10.1109/ISCAS.2016.7527410Proceedings - IEEE International Symposium on Circuits and Systems, v. 2016-July, p. 994-997.0271-4310http://hdl.handle.net/11449/23450510.1109/ISCAS.2016.75274102-s2.0-84983453322Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings - IEEE International Symposium on Circuits and Systemsinfo:eu-repo/semantics/openAccess2024-04-23T16:11:19Zoai:repositorio.unesp.br:11449/234505Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:48:48.907678Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A block-based Markov random field model estimation for contextual classification using Optimum-Path Forest |
title |
A block-based Markov random field model estimation for contextual classification using Optimum-Path Forest |
spellingShingle |
A block-based Markov random field model estimation for contextual classification using Optimum-Path Forest Osaku, Daniel Landcover Classification Optimum-Path Forest Pattern Classification |
title_short |
A block-based Markov random field model estimation for contextual classification using Optimum-Path Forest |
title_full |
A block-based Markov random field model estimation for contextual classification using Optimum-Path Forest |
title_fullStr |
A block-based Markov random field model estimation for contextual classification using Optimum-Path Forest |
title_full_unstemmed |
A block-based Markov random field model estimation for contextual classification using Optimum-Path Forest |
title_sort |
A block-based Markov random field model estimation for contextual classification using Optimum-Path Forest |
author |
Osaku, Daniel |
author_facet |
Osaku, Daniel Levada, Alexandre L.M. Papa, Joao Paulo [UNESP] |
author_role |
author |
author2 |
Levada, Alexandre L.M. Papa, Joao Paulo [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Osaku, Daniel Levada, Alexandre L.M. Papa, Joao Paulo [UNESP] |
dc.subject.por.fl_str_mv |
Landcover Classification Optimum-Path Forest Pattern Classification |
topic |
Landcover Classification Optimum-Path Forest Pattern Classification |
description |
Contextual image classification aims at considering the information about nearby samples in the learning process in order to provide more accurate results. In this paper, we propose a locally-adaptive Optimum-Path Forest classifier together with Markov Random Fields (MRF) that surpasses its naïve version, which was recently presented in the literature. The experimental results over four satellite images demonstrated the proposed approach an outperform previous results, as well as it can perform MRF parameter learning much faster than its former version. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-07-29 2022-05-02T20:23:59Z 2022-05-02T20:23:59Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/ISCAS.2016.7527410 Proceedings - IEEE International Symposium on Circuits and Systems, v. 2016-July, p. 994-997. 0271-4310 http://hdl.handle.net/11449/234505 10.1109/ISCAS.2016.7527410 2-s2.0-84983453322 |
url |
http://dx.doi.org/10.1109/ISCAS.2016.7527410 http://hdl.handle.net/11449/234505 |
identifier_str_mv |
Proceedings - IEEE International Symposium on Circuits and Systems, v. 2016-July, p. 994-997. 0271-4310 10.1109/ISCAS.2016.7527410 2-s2.0-84983453322 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings - IEEE International Symposium on Circuits and Systems |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
994-997 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128566350577664 |