A kernel-based optimum-path forest classifier
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-319-75193-1_78 http://hdl.handle.net/11449/179600 |
Resumo: | The modeling of real-world problems as graphs along with the problem of non-linear distributions comes up with the idea of applying kernel functions in feature spaces. Roughly speaking, the idea is to seek for well-behaved samples in higher dimensional spaces, where the assumption of linearly separable samples is stronger. In this matter, this paper proposes a kernel-based Optimum-Path Forest (OPF) classifier by incorporating kernel functions in both training and classification steps. The proposed technique was evaluated over a benchmark comprised of 11 datasets, whose results outperformed the well-known Support Vector Machines and the standard OPF classifier for some situations. |
id |
UNSP_7d682344fc7444aa34747e8a7b6d96f2 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/179600 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A kernel-based optimum-path forest classifierKernelOptimum-path forestSupport vector machinesThe modeling of real-world problems as graphs along with the problem of non-linear distributions comes up with the idea of applying kernel functions in feature spaces. Roughly speaking, the idea is to seek for well-behaved samples in higher dimensional spaces, where the assumption of linearly separable samples is stronger. In this matter, this paper proposes a kernel-based Optimum-Path Forest (OPF) classifier by incorporating kernel functions in both training and classification steps. The proposed technique was evaluated over a benchmark comprised of 11 datasets, whose results outperformed the well-known Support Vector Machines and the standard OPF classifier for some situations.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Department of Computing UFSCar - Federal University of São CarlosUniversity of Western São PauloSchool of Sciences UNESP - São Paulo State UniversitySchool of Sciences UNESP - São Paulo State UniversityFAPESP: #2014/12236-1FAPESP: #2014/16250-9FAPESP: #2016/19403-6CAPES: #306166/2014-3CNPq: #306166/2014-3Universidade Federal de São Carlos (UFSCar)University of Western São PauloUniversidade Estadual Paulista (Unesp)Afonso, Luis C. S.Pereira, Danillo R.Papa, João P. [UNESP]2018-12-11T17:35:59Z2018-12-11T17:35:59Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject652-660http://dx.doi.org/10.1007/978-3-319-75193-1_78Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10657 LNCS, p. 652-660.1611-33490302-9743http://hdl.handle.net/11449/17960010.1007/978-3-319-75193-1_782-s2.0-85042220385Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)0,295info:eu-repo/semantics/openAccess2024-04-23T16:11:19Zoai:repositorio.unesp.br:11449/179600Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:26:38.338668Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A kernel-based optimum-path forest classifier |
title |
A kernel-based optimum-path forest classifier |
spellingShingle |
A kernel-based optimum-path forest classifier Afonso, Luis C. S. Kernel Optimum-path forest Support vector machines |
title_short |
A kernel-based optimum-path forest classifier |
title_full |
A kernel-based optimum-path forest classifier |
title_fullStr |
A kernel-based optimum-path forest classifier |
title_full_unstemmed |
A kernel-based optimum-path forest classifier |
title_sort |
A kernel-based optimum-path forest classifier |
author |
Afonso, Luis C. S. |
author_facet |
Afonso, Luis C. S. Pereira, Danillo R. Papa, João P. [UNESP] |
author_role |
author |
author2 |
Pereira, Danillo R. Papa, João P. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) University of Western São Paulo Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Afonso, Luis C. S. Pereira, Danillo R. Papa, João P. [UNESP] |
dc.subject.por.fl_str_mv |
Kernel Optimum-path forest Support vector machines |
topic |
Kernel Optimum-path forest Support vector machines |
description |
The modeling of real-world problems as graphs along with the problem of non-linear distributions comes up with the idea of applying kernel functions in feature spaces. Roughly speaking, the idea is to seek for well-behaved samples in higher dimensional spaces, where the assumption of linearly separable samples is stronger. In this matter, this paper proposes a kernel-based Optimum-Path Forest (OPF) classifier by incorporating kernel functions in both training and classification steps. The proposed technique was evaluated over a benchmark comprised of 11 datasets, whose results outperformed the well-known Support Vector Machines and the standard OPF classifier for some situations. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-11T17:35:59Z 2018-12-11T17:35:59Z 2018-01-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-319-75193-1_78 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10657 LNCS, p. 652-660. 1611-3349 0302-9743 http://hdl.handle.net/11449/179600 10.1007/978-3-319-75193-1_78 2-s2.0-85042220385 |
url |
http://dx.doi.org/10.1007/978-3-319-75193-1_78 http://hdl.handle.net/11449/179600 |
identifier_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10657 LNCS, p. 652-660. 1611-3349 0302-9743 10.1007/978-3-319-75193-1_78 2-s2.0-85042220385 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 0,295 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
652-660 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128653010141184 |