A kernel-based optimum-path forest classifier

Detalhes bibliográficos
Autor(a) principal: Afonso, Luis C. S.
Data de Publicação: 2018
Outros Autores: Pereira, Danillo R., Papa, João P. [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/978-3-319-75193-1_78
http://hdl.handle.net/11449/179600
Resumo: The modeling of real-world problems as graphs along with the problem of non-linear distributions comes up with the idea of applying kernel functions in feature spaces. Roughly speaking, the idea is to seek for well-behaved samples in higher dimensional spaces, where the assumption of linearly separable samples is stronger. In this matter, this paper proposes a kernel-based Optimum-Path Forest (OPF) classifier by incorporating kernel functions in both training and classification steps. The proposed technique was evaluated over a benchmark comprised of 11 datasets, whose results outperformed the well-known Support Vector Machines and the standard OPF classifier for some situations.
id UNSP_7d682344fc7444aa34747e8a7b6d96f2
oai_identifier_str oai:repositorio.unesp.br:11449/179600
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A kernel-based optimum-path forest classifierKernelOptimum-path forestSupport vector machinesThe modeling of real-world problems as graphs along with the problem of non-linear distributions comes up with the idea of applying kernel functions in feature spaces. Roughly speaking, the idea is to seek for well-behaved samples in higher dimensional spaces, where the assumption of linearly separable samples is stronger. In this matter, this paper proposes a kernel-based Optimum-Path Forest (OPF) classifier by incorporating kernel functions in both training and classification steps. The proposed technique was evaluated over a benchmark comprised of 11 datasets, whose results outperformed the well-known Support Vector Machines and the standard OPF classifier for some situations.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Department of Computing UFSCar - Federal University of São CarlosUniversity of Western São PauloSchool of Sciences UNESP - São Paulo State UniversitySchool of Sciences UNESP - São Paulo State UniversityFAPESP: #2014/12236-1FAPESP: #2014/16250-9FAPESP: #2016/19403-6CAPES: #306166/2014-3CNPq: #306166/2014-3Universidade Federal de São Carlos (UFSCar)University of Western São PauloUniversidade Estadual Paulista (Unesp)Afonso, Luis C. S.Pereira, Danillo R.Papa, João P. [UNESP]2018-12-11T17:35:59Z2018-12-11T17:35:59Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject652-660http://dx.doi.org/10.1007/978-3-319-75193-1_78Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10657 LNCS, p. 652-660.1611-33490302-9743http://hdl.handle.net/11449/17960010.1007/978-3-319-75193-1_782-s2.0-85042220385Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)0,295info:eu-repo/semantics/openAccess2024-04-23T16:11:19Zoai:repositorio.unesp.br:11449/179600Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:26:38.338668Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A kernel-based optimum-path forest classifier
title A kernel-based optimum-path forest classifier
spellingShingle A kernel-based optimum-path forest classifier
Afonso, Luis C. S.
Kernel
Optimum-path forest
Support vector machines
title_short A kernel-based optimum-path forest classifier
title_full A kernel-based optimum-path forest classifier
title_fullStr A kernel-based optimum-path forest classifier
title_full_unstemmed A kernel-based optimum-path forest classifier
title_sort A kernel-based optimum-path forest classifier
author Afonso, Luis C. S.
author_facet Afonso, Luis C. S.
Pereira, Danillo R.
Papa, João P. [UNESP]
author_role author
author2 Pereira, Danillo R.
Papa, João P. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Federal de São Carlos (UFSCar)
University of Western São Paulo
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Afonso, Luis C. S.
Pereira, Danillo R.
Papa, João P. [UNESP]
dc.subject.por.fl_str_mv Kernel
Optimum-path forest
Support vector machines
topic Kernel
Optimum-path forest
Support vector machines
description The modeling of real-world problems as graphs along with the problem of non-linear distributions comes up with the idea of applying kernel functions in feature spaces. Roughly speaking, the idea is to seek for well-behaved samples in higher dimensional spaces, where the assumption of linearly separable samples is stronger. In this matter, this paper proposes a kernel-based Optimum-Path Forest (OPF) classifier by incorporating kernel functions in both training and classification steps. The proposed technique was evaluated over a benchmark comprised of 11 datasets, whose results outperformed the well-known Support Vector Machines and the standard OPF classifier for some situations.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-11T17:35:59Z
2018-12-11T17:35:59Z
2018-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/978-3-319-75193-1_78
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10657 LNCS, p. 652-660.
1611-3349
0302-9743
http://hdl.handle.net/11449/179600
10.1007/978-3-319-75193-1_78
2-s2.0-85042220385
url http://dx.doi.org/10.1007/978-3-319-75193-1_78
http://hdl.handle.net/11449/179600
identifier_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10657 LNCS, p. 652-660.
1611-3349
0302-9743
10.1007/978-3-319-75193-1_78
2-s2.0-85042220385
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
0,295
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 652-660
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128653010141184