Existence and Profile of Ground-State Solutions to a 1-Laplacian Problem in RN

Detalhes bibliográficos
Autor(a) principal: Alves, Claudianor O.
Data de Publicação: 2020
Outros Autores: Figueiredo, Giovany M., Pimenta, Marcos T. O. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s00574-019-00179-4
http://hdl.handle.net/11449/199658
Resumo: In this work we prove the existence of ground state solutions for the following class of problems {-Δ1u+(1+λV(x))u|u|=f(u),x∈RN,u∈BV(RN),where λ> 0 , Δ 1 denotes the 1-Laplacian operator which is formally defined by Δ1u=div(∇u/|∇u|), V: RN→ R is a potential satisfying some conditions and f: R→ R is a subcritical nonlinearity. We prove that for λ> 0 large enough there exist ground-state solutions and, as λ→ + ∞, such solutions converges to a ground-state solution of the limit problem in Ω=int(V-1({0})).
id UNSP_ca63f16dbc2ce4c8d357b48455576bff
oai_identifier_str oai:repositorio.unesp.br:11449/199658
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Existence and Profile of Ground-State Solutions to a 1-Laplacian Problem in RN1-Laplacian operatorBounded variation functionsConcentration resultsIn this work we prove the existence of ground state solutions for the following class of problems {-Δ1u+(1+λV(x))u|u|=f(u),x∈RN,u∈BV(RN),where λ> 0 , Δ 1 denotes the 1-Laplacian operator which is formally defined by Δ1u=div(∇u/|∇u|), V: RN→ R is a potential satisfying some conditions and f: R→ R is a subcritical nonlinearity. We prove that for λ> 0 large enough there exist ground-state solutions and, as λ→ + ∞, such solutions converges to a ground-state solution of the limit problem in Ω=int(V-1({0})).Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Apoio à Pesquisa do Distrito FederalFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Unidade Acadêmica de Matemática e Estatística Universidade Federal de Campina GrandeDepartamento de Matemática Universidade de Brasília-UNBDepartamento de Matemática e Computação Universidade Estadual Paulista (Unesp) Faculdade de Ciências e TecnologiaDepartamento de Matemática e Computação Universidade Estadual Paulista (Unesp) Faculdade de Ciências e TecnologiaFAPESP: 2019/14330-9CNPq: 303788/2018-6CNPq: 304804/2017-7Universidade Federal de Campina GrandeUniversidade de Brasília (UnB)Universidade Estadual Paulista (Unesp)Alves, Claudianor O.Figueiredo, Giovany M.Pimenta, Marcos T. O. [UNESP]2020-12-12T01:45:48Z2020-12-12T01:45:48Z2020-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article863-886http://dx.doi.org/10.1007/s00574-019-00179-4Bulletin of the Brazilian Mathematical Society, v. 51, n. 3, p. 863-886, 2020.1678-7544http://hdl.handle.net/11449/19965810.1007/s00574-019-00179-42-s2.0-85075077815Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBulletin of the Brazilian Mathematical Societyinfo:eu-repo/semantics/openAccess2024-06-19T14:32:06Zoai:repositorio.unesp.br:11449/199658Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:14:47.976539Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Existence and Profile of Ground-State Solutions to a 1-Laplacian Problem in RN
title Existence and Profile of Ground-State Solutions to a 1-Laplacian Problem in RN
spellingShingle Existence and Profile of Ground-State Solutions to a 1-Laplacian Problem in RN
Alves, Claudianor O.
1-Laplacian operator
Bounded variation functions
Concentration results
title_short Existence and Profile of Ground-State Solutions to a 1-Laplacian Problem in RN
title_full Existence and Profile of Ground-State Solutions to a 1-Laplacian Problem in RN
title_fullStr Existence and Profile of Ground-State Solutions to a 1-Laplacian Problem in RN
title_full_unstemmed Existence and Profile of Ground-State Solutions to a 1-Laplacian Problem in RN
title_sort Existence and Profile of Ground-State Solutions to a 1-Laplacian Problem in RN
author Alves, Claudianor O.
author_facet Alves, Claudianor O.
Figueiredo, Giovany M.
Pimenta, Marcos T. O. [UNESP]
author_role author
author2 Figueiredo, Giovany M.
Pimenta, Marcos T. O. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Federal de Campina Grande
Universidade de Brasília (UnB)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Alves, Claudianor O.
Figueiredo, Giovany M.
Pimenta, Marcos T. O. [UNESP]
dc.subject.por.fl_str_mv 1-Laplacian operator
Bounded variation functions
Concentration results
topic 1-Laplacian operator
Bounded variation functions
Concentration results
description In this work we prove the existence of ground state solutions for the following class of problems {-Δ1u+(1+λV(x))u|u|=f(u),x∈RN,u∈BV(RN),where λ> 0 , Δ 1 denotes the 1-Laplacian operator which is formally defined by Δ1u=div(∇u/|∇u|), V: RN→ R is a potential satisfying some conditions and f: R→ R is a subcritical nonlinearity. We prove that for λ> 0 large enough there exist ground-state solutions and, as λ→ + ∞, such solutions converges to a ground-state solution of the limit problem in Ω=int(V-1({0})).
publishDate 2020
dc.date.none.fl_str_mv 2020-12-12T01:45:48Z
2020-12-12T01:45:48Z
2020-09-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s00574-019-00179-4
Bulletin of the Brazilian Mathematical Society, v. 51, n. 3, p. 863-886, 2020.
1678-7544
http://hdl.handle.net/11449/199658
10.1007/s00574-019-00179-4
2-s2.0-85075077815
url http://dx.doi.org/10.1007/s00574-019-00179-4
http://hdl.handle.net/11449/199658
identifier_str_mv Bulletin of the Brazilian Mathematical Society, v. 51, n. 3, p. 863-886, 2020.
1678-7544
10.1007/s00574-019-00179-4
2-s2.0-85075077815
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Bulletin of the Brazilian Mathematical Society
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 863-886
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129408336134144