Existence and Profile of Ground-State Solutions to a 1-Laplacian Problem in RN
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s00574-019-00179-4 http://hdl.handle.net/11449/199658 |
Resumo: | In this work we prove the existence of ground state solutions for the following class of problems {-Δ1u+(1+λV(x))u|u|=f(u),x∈RN,u∈BV(RN),where λ> 0 , Δ 1 denotes the 1-Laplacian operator which is formally defined by Δ1u=div(∇u/|∇u|), V: RN→ R is a potential satisfying some conditions and f: R→ R is a subcritical nonlinearity. We prove that for λ> 0 large enough there exist ground-state solutions and, as λ→ + ∞, such solutions converges to a ground-state solution of the limit problem in Ω=int(V-1({0})). |
id |
UNSP_ca63f16dbc2ce4c8d357b48455576bff |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/199658 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Existence and Profile of Ground-State Solutions to a 1-Laplacian Problem in RN1-Laplacian operatorBounded variation functionsConcentration resultsIn this work we prove the existence of ground state solutions for the following class of problems {-Δ1u+(1+λV(x))u|u|=f(u),x∈RN,u∈BV(RN),where λ> 0 , Δ 1 denotes the 1-Laplacian operator which is formally defined by Δ1u=div(∇u/|∇u|), V: RN→ R is a potential satisfying some conditions and f: R→ R is a subcritical nonlinearity. We prove that for λ> 0 large enough there exist ground-state solutions and, as λ→ + ∞, such solutions converges to a ground-state solution of the limit problem in Ω=int(V-1({0})).Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Apoio à Pesquisa do Distrito FederalFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Unidade Acadêmica de Matemática e Estatística Universidade Federal de Campina GrandeDepartamento de Matemática Universidade de Brasília-UNBDepartamento de Matemática e Computação Universidade Estadual Paulista (Unesp) Faculdade de Ciências e TecnologiaDepartamento de Matemática e Computação Universidade Estadual Paulista (Unesp) Faculdade de Ciências e TecnologiaFAPESP: 2019/14330-9CNPq: 303788/2018-6CNPq: 304804/2017-7Universidade Federal de Campina GrandeUniversidade de Brasília (UnB)Universidade Estadual Paulista (Unesp)Alves, Claudianor O.Figueiredo, Giovany M.Pimenta, Marcos T. O. [UNESP]2020-12-12T01:45:48Z2020-12-12T01:45:48Z2020-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article863-886http://dx.doi.org/10.1007/s00574-019-00179-4Bulletin of the Brazilian Mathematical Society, v. 51, n. 3, p. 863-886, 2020.1678-7544http://hdl.handle.net/11449/19965810.1007/s00574-019-00179-42-s2.0-85075077815Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBulletin of the Brazilian Mathematical Societyinfo:eu-repo/semantics/openAccess2024-06-19T14:32:06Zoai:repositorio.unesp.br:11449/199658Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:14:47.976539Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Existence and Profile of Ground-State Solutions to a 1-Laplacian Problem in RN |
title |
Existence and Profile of Ground-State Solutions to a 1-Laplacian Problem in RN |
spellingShingle |
Existence and Profile of Ground-State Solutions to a 1-Laplacian Problem in RN Alves, Claudianor O. 1-Laplacian operator Bounded variation functions Concentration results |
title_short |
Existence and Profile of Ground-State Solutions to a 1-Laplacian Problem in RN |
title_full |
Existence and Profile of Ground-State Solutions to a 1-Laplacian Problem in RN |
title_fullStr |
Existence and Profile of Ground-State Solutions to a 1-Laplacian Problem in RN |
title_full_unstemmed |
Existence and Profile of Ground-State Solutions to a 1-Laplacian Problem in RN |
title_sort |
Existence and Profile of Ground-State Solutions to a 1-Laplacian Problem in RN |
author |
Alves, Claudianor O. |
author_facet |
Alves, Claudianor O. Figueiredo, Giovany M. Pimenta, Marcos T. O. [UNESP] |
author_role |
author |
author2 |
Figueiredo, Giovany M. Pimenta, Marcos T. O. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de Campina Grande Universidade de Brasília (UnB) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Alves, Claudianor O. Figueiredo, Giovany M. Pimenta, Marcos T. O. [UNESP] |
dc.subject.por.fl_str_mv |
1-Laplacian operator Bounded variation functions Concentration results |
topic |
1-Laplacian operator Bounded variation functions Concentration results |
description |
In this work we prove the existence of ground state solutions for the following class of problems {-Δ1u+(1+λV(x))u|u|=f(u),x∈RN,u∈BV(RN),where λ> 0 , Δ 1 denotes the 1-Laplacian operator which is formally defined by Δ1u=div(∇u/|∇u|), V: RN→ R is a potential satisfying some conditions and f: R→ R is a subcritical nonlinearity. We prove that for λ> 0 large enough there exist ground-state solutions and, as λ→ + ∞, such solutions converges to a ground-state solution of the limit problem in Ω=int(V-1({0})). |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-12T01:45:48Z 2020-12-12T01:45:48Z 2020-09-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s00574-019-00179-4 Bulletin of the Brazilian Mathematical Society, v. 51, n. 3, p. 863-886, 2020. 1678-7544 http://hdl.handle.net/11449/199658 10.1007/s00574-019-00179-4 2-s2.0-85075077815 |
url |
http://dx.doi.org/10.1007/s00574-019-00179-4 http://hdl.handle.net/11449/199658 |
identifier_str_mv |
Bulletin of the Brazilian Mathematical Society, v. 51, n. 3, p. 863-886, 2020. 1678-7544 10.1007/s00574-019-00179-4 2-s2.0-85075077815 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Bulletin of the Brazilian Mathematical Society |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
863-886 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129408336134144 |