Computing Subfields

Detalhes bibliográficos
Autor(a) principal: Szutkoski, Jonas
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRGS
Texto Completo: http://hdl.handle.net/10183/172180
Resumo: Neste trabalho, consideramos o problema de calcular o reticulado de subcorpos de uma extensão separável e de grau nito k( )/k. Isto e, queremos encontrar todos os corpos L tais que k L k( ). Até recentemente, o algoritmo utilizado pela maioria dos Sistemas Algébricos Computacionais baseava-se em um problema combinatorial nas raízes do polinômio minimal f de sobre k. Em 2013, um algoritmo foi apresentado para encontrar tais subcorpos. Este método calcula um pequeno conjunto de subcorpos, chamados de subcorpos principais, com a propriedade de que todo subcorpo de k( )/k e a interseção de alguns destes subcorpos. Assim, calcular o reticulado de subcorpos e dividido em duas etapas: 1) Encontrar os subcorpos principais de k( )/k e 2) Calcular todas as interseções destes subcorpos. A primeira etapa pode ser feita em tempo polinomial. Entretanto, a segunda etapa não pode e assim, domina a complexidade do algoritmo. Nosso objetivo e melhorar a segunda etapa, tanto em teoria quanto na prática. Para isso, mostramos como rapidamente calcular todas as interseções entre os subcorpos principais. Embora a complexidade continue não sendo limitada polinomialmente (e também não poderia ser, pois o número total de subcorpos não o é), conseguimos melhorar a complexidade do algoritmo. Também notamos um melhoramento na prática, principalmente quando o número de subcorpos e grande. Além disso, estudamos dois casos especiais: corpos numéricos e o corpo das funções racionais. Para corpos numéricos (i.e., quando k = Q), também apresentamos um melhoramento para a primeira etapa. No segundo caso, os subcorpos da extensão k(t)=k(f(t)), definida por f(t) 2 k(t), nos fornecem decomposições da função racional f(t). Nosso algoritmo tem uma performance melhor que algoritmos anteriores para calcular as decomposições de funções racionais.
id URGS_7f793be6600a82611a9eadee26b81abc
oai_identifier_str oai:www.lume.ufrgs.br:10183/172180
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str 1853
spelling Szutkoski, JonasTrevisan, VilmarAllem, Luiz Emílio2018-01-27T02:30:58Z2017http://hdl.handle.net/10183/172180001059234Neste trabalho, consideramos o problema de calcular o reticulado de subcorpos de uma extensão separável e de grau nito k( )/k. Isto e, queremos encontrar todos os corpos L tais que k L k( ). Até recentemente, o algoritmo utilizado pela maioria dos Sistemas Algébricos Computacionais baseava-se em um problema combinatorial nas raízes do polinômio minimal f de sobre k. Em 2013, um algoritmo foi apresentado para encontrar tais subcorpos. Este método calcula um pequeno conjunto de subcorpos, chamados de subcorpos principais, com a propriedade de que todo subcorpo de k( )/k e a interseção de alguns destes subcorpos. Assim, calcular o reticulado de subcorpos e dividido em duas etapas: 1) Encontrar os subcorpos principais de k( )/k e 2) Calcular todas as interseções destes subcorpos. A primeira etapa pode ser feita em tempo polinomial. Entretanto, a segunda etapa não pode e assim, domina a complexidade do algoritmo. Nosso objetivo e melhorar a segunda etapa, tanto em teoria quanto na prática. Para isso, mostramos como rapidamente calcular todas as interseções entre os subcorpos principais. Embora a complexidade continue não sendo limitada polinomialmente (e também não poderia ser, pois o número total de subcorpos não o é), conseguimos melhorar a complexidade do algoritmo. Também notamos um melhoramento na prática, principalmente quando o número de subcorpos e grande. Além disso, estudamos dois casos especiais: corpos numéricos e o corpo das funções racionais. Para corpos numéricos (i.e., quando k = Q), também apresentamos um melhoramento para a primeira etapa. No segundo caso, os subcorpos da extensão k(t)=k(f(t)), definida por f(t) 2 k(t), nos fornecem decomposições da função racional f(t). Nosso algoritmo tem uma performance melhor que algoritmos anteriores para calcular as decomposições de funções racionais.In this work, we consider the problem of computing the sub eld lattice of a separable and nite degree eld extension k( )/k. That is, we wish to nd all elds L such that k L k( ). Until recently, the algorithm used by most Computer Algebraic Systems relied on a combinatorial problem on the roots of the minimal polynomial f of over k, which can be a computationally expensive task. In 2013, another algorithm was presented to nd the sub eld lattice of k( )/k. This method computes a small set of sub elds, called principal sub elds, with the property that any other sub eld of k( )/k is the intersection of some of these principal sub elds. Thus, the problem of computing the sub eld lattice can be split into 2 steps: 1) Find the principal sub elds of k( )/k and 2) Compute all intersections of these sub elds. The rst step can be executed in polynomial time however, the second step can not and thus, dominates the algorithm complexity.Our main goal is to improve the second step, both theoretically and practically. More speci cally, we develop a method to quickly compute all intersections of principal sub elds. While the complexity is still not polynomially bounded (in fact, it can not be for the total number of sub elds is not polynomially bounded), this new method helps to improve the non-polynomial part of the complexity. Practical performance is also improved when the number of intersections is large. We also focus on two special cases: number elds and rational function elds. For the number eld case (i.e., when k = Q), we also present an improvement for the rst step. For the rational function eld case, computing the sub eld lattice of the extension K(t)=K(f(t)) de ned by f(t) 2 K(t) yields all decompositions of the rational function f(t). Our algorithm outperforms previous algorithms for computing rational function decompositions.application/pdfporÁlgebra ComputacionalPartiçõesFunções racionaisComputing Subfieldsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulInstituto de Matemática e EstatísticaPrograma de Pós-Graduação em MatemáticaPorto Alegre, BR-RS2017.doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL001059234.pdf001059234.pdfTexto completo (inglês)application/pdf887434http://www.lume.ufrgs.br/bitstream/10183/172180/1/001059234.pdf373dfe6d50d4210a0b04cd32f9a8124bMD51TEXT001059234.pdf.txt001059234.pdf.txtExtracted Texttext/plain271693http://www.lume.ufrgs.br/bitstream/10183/172180/2/001059234.pdf.txt5adf407b0b0c8ad93e5c27be6bb1fc87MD52THUMBNAIL001059234.pdf.jpg001059234.pdf.jpgGenerated Thumbnailimage/jpeg1064http://www.lume.ufrgs.br/bitstream/10183/172180/3/001059234.pdf.jpgd45fe0ab09a83e83e5f6072db0b13e1cMD5310183/1721802018-10-24 09:07:59.799oai:www.lume.ufrgs.br:10183/172180Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532018-10-24T12:07:59Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Computing Subfields
title Computing Subfields
spellingShingle Computing Subfields
Szutkoski, Jonas
Álgebra Computacional
Partições
Funções racionais
title_short Computing Subfields
title_full Computing Subfields
title_fullStr Computing Subfields
title_full_unstemmed Computing Subfields
title_sort Computing Subfields
author Szutkoski, Jonas
author_facet Szutkoski, Jonas
author_role author
dc.contributor.author.fl_str_mv Szutkoski, Jonas
dc.contributor.advisor1.fl_str_mv Trevisan, Vilmar
dc.contributor.advisor-co1.fl_str_mv Allem, Luiz Emílio
contributor_str_mv Trevisan, Vilmar
Allem, Luiz Emílio
dc.subject.por.fl_str_mv Álgebra Computacional
Partições
Funções racionais
topic Álgebra Computacional
Partições
Funções racionais
description Neste trabalho, consideramos o problema de calcular o reticulado de subcorpos de uma extensão separável e de grau nito k( )/k. Isto e, queremos encontrar todos os corpos L tais que k L k( ). Até recentemente, o algoritmo utilizado pela maioria dos Sistemas Algébricos Computacionais baseava-se em um problema combinatorial nas raízes do polinômio minimal f de sobre k. Em 2013, um algoritmo foi apresentado para encontrar tais subcorpos. Este método calcula um pequeno conjunto de subcorpos, chamados de subcorpos principais, com a propriedade de que todo subcorpo de k( )/k e a interseção de alguns destes subcorpos. Assim, calcular o reticulado de subcorpos e dividido em duas etapas: 1) Encontrar os subcorpos principais de k( )/k e 2) Calcular todas as interseções destes subcorpos. A primeira etapa pode ser feita em tempo polinomial. Entretanto, a segunda etapa não pode e assim, domina a complexidade do algoritmo. Nosso objetivo e melhorar a segunda etapa, tanto em teoria quanto na prática. Para isso, mostramos como rapidamente calcular todas as interseções entre os subcorpos principais. Embora a complexidade continue não sendo limitada polinomialmente (e também não poderia ser, pois o número total de subcorpos não o é), conseguimos melhorar a complexidade do algoritmo. Também notamos um melhoramento na prática, principalmente quando o número de subcorpos e grande. Além disso, estudamos dois casos especiais: corpos numéricos e o corpo das funções racionais. Para corpos numéricos (i.e., quando k = Q), também apresentamos um melhoramento para a primeira etapa. No segundo caso, os subcorpos da extensão k(t)=k(f(t)), definida por f(t) 2 k(t), nos fornecem decomposições da função racional f(t). Nosso algoritmo tem uma performance melhor que algoritmos anteriores para calcular as decomposições de funções racionais.
publishDate 2017
dc.date.issued.fl_str_mv 2017
dc.date.accessioned.fl_str_mv 2018-01-27T02:30:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/172180
dc.identifier.nrb.pt_BR.fl_str_mv 001059234
url http://hdl.handle.net/10183/172180
identifier_str_mv 001059234
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/172180/1/001059234.pdf
http://www.lume.ufrgs.br/bitstream/10183/172180/2/001059234.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/172180/3/001059234.pdf.jpg
bitstream.checksum.fl_str_mv 373dfe6d50d4210a0b04cd32f9a8124b
5adf407b0b0c8ad93e5c27be6bb1fc87
d45fe0ab09a83e83e5f6072db0b13e1c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1800309119082561536