Clifford and composed foliations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45131/tde-18122017-132219/ |
Resumo: | Singular Riemannian foliations in spheres provide local models for an extensive kind of singular Riemannian foliations, whose theory contributes in the understanding of Riemannian manifolds. Hence the importance of studying and classifying them, a research subject that still remains open. In 2014, Marco Radeschi constructed indecomposable singular Riemannian foliations of arbitrary codimension, most of them inhomogeneous, which generalized all known examples of that type so far. The present dissertation is a detailed study of his work, along with observations about the progress made on this dynamic field since that paper was published. Besides introducing preliminary notions and examples on singular Riemannian foliations, isometric actions and Clifford theory, it is explained a construction of inhomogeneous isoparametric hypersurfaces, due to Ferus, Karcher and Münzner, that was a fundamental framework for the results of Radeschi. After that, it is described exhaustively the construction of Clifford and composed foliations in spheres, which are the examples that Radeschi created using Clifford systems. In the sequel it is established an extraordinary bijective correspondence between Clifford foliations (merely geometric objects) and Clifford systems (purely algebraic objects). This text finishes examining the relations of homogeneity properties among FKM, Clifford and composed foliations. |
id |
USP_20a5f2c9ab48cbabb66acf8143e5c248 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-18122017-132219 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Clifford and composed foliationsFolheações de Clifford e folheações compostasÁlgebra de CliffordClifford algebraClifford foliationClifford systemComposed foliationFKM foliationFolheação compostaFolheação de CliffordFolheação FKMFolheação Riemanniana singularSingular Riemannian foliationSistema de CliffordSingular Riemannian foliations in spheres provide local models for an extensive kind of singular Riemannian foliations, whose theory contributes in the understanding of Riemannian manifolds. Hence the importance of studying and classifying them, a research subject that still remains open. In 2014, Marco Radeschi constructed indecomposable singular Riemannian foliations of arbitrary codimension, most of them inhomogeneous, which generalized all known examples of that type so far. The present dissertation is a detailed study of his work, along with observations about the progress made on this dynamic field since that paper was published. Besides introducing preliminary notions and examples on singular Riemannian foliations, isometric actions and Clifford theory, it is explained a construction of inhomogeneous isoparametric hypersurfaces, due to Ferus, Karcher and Münzner, that was a fundamental framework for the results of Radeschi. After that, it is described exhaustively the construction of Clifford and composed foliations in spheres, which are the examples that Radeschi created using Clifford systems. In the sequel it is established an extraordinary bijective correspondence between Clifford foliations (merely geometric objects) and Clifford systems (purely algebraic objects). This text finishes examining the relations of homogeneity properties among FKM, Clifford and composed foliations.Folheações Riemannianas singulares em esferas fornecem modelos locais para folheações Riemannianas singulares mais gerais, cuja teoria contribui na compreensão de variedades Riemannianas. Daí a sua importança de estudá-los e classificá-los, uma área de pesquisa que se mantém aberta. Em 2014, Marco Radeschi construiu folheações Riemannianas singulares indecomponíveis de codimensão arbitrária, a maioria delas não homogêneas, que generalizaram todos os exemplos conhecidos desse tipo até então. A presente dissertação é um estudo detalhado desse trabalho, junto com observações sobre avanços que se têm feito neste dinâmico campo desde a publicação do artigo. Após introduzir as noções e exemplos preliminares de folheações Riemannianas singulares, ações isométricas e teoria de Clifford, é explorada uma construção de hipersuperfícies isoparamétricas não homogêneas, devida a Ferus, Karcher e Münzner (FKM), que foi peça fundamental para os resultados de Radeschi. Em seguida, descreve-se minuciosamente a construção de folheações composta e de Clifford em esferas, que são os exemplos que o autor mencionado anteriormente gerou usando sistemas de Clifford. Continuando com a análise dessas novas folheações Riemannianas singulares, estabelece-se uma extraordinária correspondência biunívoca entre folheações de Clifford (objetos meramente geométricos) e sistemas de Clifford (objetos puramente algébricos). Este texto termina examinando as relações das propriedades de homogeneidade entre folheações FKM, compostas e de Clifford.Biblioteca Digitais de Teses e Dissertações da USPGorodski, ClaudioLozano, Julia Carolina Torres2017-08-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45131/tde-18122017-132219/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2018-07-19T20:50:39Zoai:teses.usp.br:tde-18122017-132219Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212018-07-19T20:50:39Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Clifford and composed foliations Folheações de Clifford e folheações compostas |
title |
Clifford and composed foliations |
spellingShingle |
Clifford and composed foliations Lozano, Julia Carolina Torres Álgebra de Clifford Clifford algebra Clifford foliation Clifford system Composed foliation FKM foliation Folheação composta Folheação de Clifford Folheação FKM Folheação Riemanniana singular Singular Riemannian foliation Sistema de Clifford |
title_short |
Clifford and composed foliations |
title_full |
Clifford and composed foliations |
title_fullStr |
Clifford and composed foliations |
title_full_unstemmed |
Clifford and composed foliations |
title_sort |
Clifford and composed foliations |
author |
Lozano, Julia Carolina Torres |
author_facet |
Lozano, Julia Carolina Torres |
author_role |
author |
dc.contributor.none.fl_str_mv |
Gorodski, Claudio |
dc.contributor.author.fl_str_mv |
Lozano, Julia Carolina Torres |
dc.subject.por.fl_str_mv |
Álgebra de Clifford Clifford algebra Clifford foliation Clifford system Composed foliation FKM foliation Folheação composta Folheação de Clifford Folheação FKM Folheação Riemanniana singular Singular Riemannian foliation Sistema de Clifford |
topic |
Álgebra de Clifford Clifford algebra Clifford foliation Clifford system Composed foliation FKM foliation Folheação composta Folheação de Clifford Folheação FKM Folheação Riemanniana singular Singular Riemannian foliation Sistema de Clifford |
description |
Singular Riemannian foliations in spheres provide local models for an extensive kind of singular Riemannian foliations, whose theory contributes in the understanding of Riemannian manifolds. Hence the importance of studying and classifying them, a research subject that still remains open. In 2014, Marco Radeschi constructed indecomposable singular Riemannian foliations of arbitrary codimension, most of them inhomogeneous, which generalized all known examples of that type so far. The present dissertation is a detailed study of his work, along with observations about the progress made on this dynamic field since that paper was published. Besides introducing preliminary notions and examples on singular Riemannian foliations, isometric actions and Clifford theory, it is explained a construction of inhomogeneous isoparametric hypersurfaces, due to Ferus, Karcher and Münzner, that was a fundamental framework for the results of Radeschi. After that, it is described exhaustively the construction of Clifford and composed foliations in spheres, which are the examples that Radeschi created using Clifford systems. In the sequel it is established an extraordinary bijective correspondence between Clifford foliations (merely geometric objects) and Clifford systems (purely algebraic objects). This text finishes examining the relations of homogeneity properties among FKM, Clifford and composed foliations. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-08-11 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-18122017-132219/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-18122017-132219/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257120711376896 |