Folheações infinitesimalmente polares
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05052011-115816/ |
Resumo: | O objetivo central desta dissertação é apresentar as folheações infinitesimalmente polares, fornecendo uma demonstração para o teorema que as caracteriza. Seguimos a abordagem original encontrada em Lytchak e Thorbergsson [25], de 2010. Diretamente da definição e do teorema principal obtem-se dois exemplos: folheações polares e folheações riemannianas singulares de codimensão 1 ou 2. Dedicamos especial atenção a um terceiro exemplo: folheações sem pontos horizontalmente conjugados. A demonstração deste resultado utiliza resultados obtidos anteriormente pelos mesmos autores em 2007, Lytchak e Thorbergsson [24]. Abordamos também, brevemente, as implicações do teorema caracterizador (que é um resultado local) sobre o quociente global de uma folheação infinitesimalmente polar. Variedades com folheações infinitesimalmente polares podem ser encaradas como um objeto que apresenta aspectos clássicos do teorema do toro maximal para grupos de Lie compactos, em um contexto mais amplo. |
id |
USP_5122274efe1afd779b97f87d2f1daa84 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-05052011-115816 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Folheações infinitesimalmente polaresInfinitesimally polar foliationschange of metriccurvature explosionespaço quociente de uma folheaçãoexplosão de curvaturafolheação infinitesimalmente polarfolheação riemanniana singularhorizontally conjugate pointsinfinitesimally polar foliationmudança de métricapontos horizontalmente conjugadosquotient space of a foliationsingular Riemannian foliationO objetivo central desta dissertação é apresentar as folheações infinitesimalmente polares, fornecendo uma demonstração para o teorema que as caracteriza. Seguimos a abordagem original encontrada em Lytchak e Thorbergsson [25], de 2010. Diretamente da definição e do teorema principal obtem-se dois exemplos: folheações polares e folheações riemannianas singulares de codimensão 1 ou 2. Dedicamos especial atenção a um terceiro exemplo: folheações sem pontos horizontalmente conjugados. A demonstração deste resultado utiliza resultados obtidos anteriormente pelos mesmos autores em 2007, Lytchak e Thorbergsson [24]. Abordamos também, brevemente, as implicações do teorema caracterizador (que é um resultado local) sobre o quociente global de uma folheação infinitesimalmente polar. Variedades com folheações infinitesimalmente polares podem ser encaradas como um objeto que apresenta aspectos clássicos do teorema do toro maximal para grupos de Lie compactos, em um contexto mais amplo.The present work aims at introducing infinitesimally polar foliations -- as defined by Lytchak and Thorbergsson [25] -- providing a proof for the classification theorem. Polar foliations and low codimension singular Riemannian foliations are two immediate examples. A third example is given by foliations without horizontally conjugate points. The proof of this assertion relies on previous results established by the same authors in Lytchak and Thorbergsson [24]. The classification theorem for infinitesimally polar foliations is a local result; we also derive from it some global consequences on the quotient space of such foliations. Infinitesimally polar foliations may be regarded as a generalised setting where one can find characteristic features from the maximal torus theorem for compact Lie groups.Biblioteca Digitais de Teses e Dissertações da USPSilva, Marcos Martins Alexandrino daBriquet, Rafael2011-04-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45131/tde-05052011-115816/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:29Zoai:teses.usp.br:tde-05052011-115816Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:29Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Folheações infinitesimalmente polares Infinitesimally polar foliations |
title |
Folheações infinitesimalmente polares |
spellingShingle |
Folheações infinitesimalmente polares Briquet, Rafael change of metric curvature explosion espaço quociente de uma folheação explosão de curvatura folheação infinitesimalmente polar folheação riemanniana singular horizontally conjugate points infinitesimally polar foliation mudança de métrica pontos horizontalmente conjugados quotient space of a foliation singular Riemannian foliation |
title_short |
Folheações infinitesimalmente polares |
title_full |
Folheações infinitesimalmente polares |
title_fullStr |
Folheações infinitesimalmente polares |
title_full_unstemmed |
Folheações infinitesimalmente polares |
title_sort |
Folheações infinitesimalmente polares |
author |
Briquet, Rafael |
author_facet |
Briquet, Rafael |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, Marcos Martins Alexandrino da |
dc.contributor.author.fl_str_mv |
Briquet, Rafael |
dc.subject.por.fl_str_mv |
change of metric curvature explosion espaço quociente de uma folheação explosão de curvatura folheação infinitesimalmente polar folheação riemanniana singular horizontally conjugate points infinitesimally polar foliation mudança de métrica pontos horizontalmente conjugados quotient space of a foliation singular Riemannian foliation |
topic |
change of metric curvature explosion espaço quociente de uma folheação explosão de curvatura folheação infinitesimalmente polar folheação riemanniana singular horizontally conjugate points infinitesimally polar foliation mudança de métrica pontos horizontalmente conjugados quotient space of a foliation singular Riemannian foliation |
description |
O objetivo central desta dissertação é apresentar as folheações infinitesimalmente polares, fornecendo uma demonstração para o teorema que as caracteriza. Seguimos a abordagem original encontrada em Lytchak e Thorbergsson [25], de 2010. Diretamente da definição e do teorema principal obtem-se dois exemplos: folheações polares e folheações riemannianas singulares de codimensão 1 ou 2. Dedicamos especial atenção a um terceiro exemplo: folheações sem pontos horizontalmente conjugados. A demonstração deste resultado utiliza resultados obtidos anteriormente pelos mesmos autores em 2007, Lytchak e Thorbergsson [24]. Abordamos também, brevemente, as implicações do teorema caracterizador (que é um resultado local) sobre o quociente global de uma folheação infinitesimalmente polar. Variedades com folheações infinitesimalmente polares podem ser encaradas como um objeto que apresenta aspectos clássicos do teorema do toro maximal para grupos de Lie compactos, em um contexto mais amplo. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-04-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05052011-115816/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05052011-115816/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256691731595264 |