Condições de otimalidade para otimização cônica

Detalhes bibliográficos
Autor(a) principal: Viana, Daiana dos Santos
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/45/45132/tde-23032019-204322/
Resumo: Neste trabalho, realizamos uma extensão da chamada condição Aproximadamente Karush-Kuhn-Tucker (AKKT), inicialmente introduzida em programação não linear [AHM11], para os problemas de otimização sob cones simétricos não linear. Uma condição nova, a qual chamamos Trace AKKT (TAKKT), também foi apresentada para o problema de programação semidefinida não linear. TAKKT se mostrou mais prática que AKKT para programação semidefinida não linear. Provamos que, tanto a condição AKKT como a condição TAKKT são condições de otimalidade. Resultados de convergência global para o método de Lagrangiano aumentado foram obtidos. Condições de qualificação estritas foram introduzidas para medir a força dos resultados de convergência global apresentados. Através destas condições de qualificação estritas, foi pos- sível verificar que nossos resultados de convergência global se mostraram melhores do que os conhecidos na literatura. Também apresentamos uma prova para um caso particular da conjectura feita em [AMS07]. Palavras-chave: condições sequenciais de otimalidade, programação semidefinida não linear, programação sob cones simétricos não linear, condições de qualificação estritas.
id USP_2a79312f76cf8f96d4b4c38860e54471
oai_identifier_str oai:teses.usp.br:tde-23032019-204322
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Condições de otimalidade para otimização cônicaOptimality conditions for conical optimizationCondições de qualificação estritasCondições sequenciais de otimalidadeNonlinear semidefinite programmingNonlinear symmetric cone programmingProgramação semidefinida não linearProgramação sob cones simétricos não linearSequential optimality conditionsStrict qualification conditionsNeste trabalho, realizamos uma extensão da chamada condição Aproximadamente Karush-Kuhn-Tucker (AKKT), inicialmente introduzida em programação não linear [AHM11], para os problemas de otimização sob cones simétricos não linear. Uma condição nova, a qual chamamos Trace AKKT (TAKKT), também foi apresentada para o problema de programação semidefinida não linear. TAKKT se mostrou mais prática que AKKT para programação semidefinida não linear. Provamos que, tanto a condição AKKT como a condição TAKKT são condições de otimalidade. Resultados de convergência global para o método de Lagrangiano aumentado foram obtidos. Condições de qualificação estritas foram introduzidas para medir a força dos resultados de convergência global apresentados. Através destas condições de qualificação estritas, foi pos- sível verificar que nossos resultados de convergência global se mostraram melhores do que os conhecidos na literatura. Também apresentamos uma prova para um caso particular da conjectura feita em [AMS07]. Palavras-chave: condições sequenciais de otimalidade, programação semidefinida não linear, programação sob cones simétricos não linear, condições de qualificação estritas.In this work, we perform an extension of the so-called Approximate Karush-Kuhn-Tucker (AKKT) condition, initially introduced in nonlinear programming [AHM11], for nonlinear symmetric cone pro- gramming. A new condition, which we call Trace AKKT (TAKKT), was also presented for the nonlinear semidefinite programming problem. TAKKT proved to be more practical than AKKT for nonlinear semi- definite programming. We prove that both the AKKT condition and the TAKKT condition are optimality conditions. Results of global convergence for the augmented Lagrangian method were obtained. Strict qua- lification conditions were introduced to measure the strength of the overall convergence results presented. Through these strict qualification conditions, it was possible to verify that our results of global convergence proved to be better than those known in the literature. We also present a proof for a particular case of the conjecture made in [AMS07].Biblioteca Digitais de Teses e Dissertações da USPHaeser, GabrielViana, Daiana dos Santos2019-02-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45132/tde-23032019-204322/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-04-10T00:06:19Zoai:teses.usp.br:tde-23032019-204322Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-04-10T00:06:19Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Condições de otimalidade para otimização cônica
Optimality conditions for conical optimization
title Condições de otimalidade para otimização cônica
spellingShingle Condições de otimalidade para otimização cônica
Viana, Daiana dos Santos
Condições de qualificação estritas
Condições sequenciais de otimalidade
Nonlinear semidefinite programming
Nonlinear symmetric cone programming
Programação semidefinida não linear
Programação sob cones simétricos não linear
Sequential optimality conditions
Strict qualification conditions
title_short Condições de otimalidade para otimização cônica
title_full Condições de otimalidade para otimização cônica
title_fullStr Condições de otimalidade para otimização cônica
title_full_unstemmed Condições de otimalidade para otimização cônica
title_sort Condições de otimalidade para otimização cônica
author Viana, Daiana dos Santos
author_facet Viana, Daiana dos Santos
author_role author
dc.contributor.none.fl_str_mv Haeser, Gabriel
dc.contributor.author.fl_str_mv Viana, Daiana dos Santos
dc.subject.por.fl_str_mv Condições de qualificação estritas
Condições sequenciais de otimalidade
Nonlinear semidefinite programming
Nonlinear symmetric cone programming
Programação semidefinida não linear
Programação sob cones simétricos não linear
Sequential optimality conditions
Strict qualification conditions
topic Condições de qualificação estritas
Condições sequenciais de otimalidade
Nonlinear semidefinite programming
Nonlinear symmetric cone programming
Programação semidefinida não linear
Programação sob cones simétricos não linear
Sequential optimality conditions
Strict qualification conditions
description Neste trabalho, realizamos uma extensão da chamada condição Aproximadamente Karush-Kuhn-Tucker (AKKT), inicialmente introduzida em programação não linear [AHM11], para os problemas de otimização sob cones simétricos não linear. Uma condição nova, a qual chamamos Trace AKKT (TAKKT), também foi apresentada para o problema de programação semidefinida não linear. TAKKT se mostrou mais prática que AKKT para programação semidefinida não linear. Provamos que, tanto a condição AKKT como a condição TAKKT são condições de otimalidade. Resultados de convergência global para o método de Lagrangiano aumentado foram obtidos. Condições de qualificação estritas foram introduzidas para medir a força dos resultados de convergência global apresentados. Através destas condições de qualificação estritas, foi pos- sível verificar que nossos resultados de convergência global se mostraram melhores do que os conhecidos na literatura. Também apresentamos uma prova para um caso particular da conjectura feita em [AMS07]. Palavras-chave: condições sequenciais de otimalidade, programação semidefinida não linear, programação sob cones simétricos não linear, condições de qualificação estritas.
publishDate 2019
dc.date.none.fl_str_mv 2019-02-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/45/45132/tde-23032019-204322/
url http://www.teses.usp.br/teses/disponiveis/45/45132/tde-23032019-204322/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257295607562240