Condições de otimalidade para otimização cônica
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45132/tde-23032019-204322/ |
Resumo: | Neste trabalho, realizamos uma extensão da chamada condição Aproximadamente Karush-Kuhn-Tucker (AKKT), inicialmente introduzida em programação não linear [AHM11], para os problemas de otimização sob cones simétricos não linear. Uma condição nova, a qual chamamos Trace AKKT (TAKKT), também foi apresentada para o problema de programação semidefinida não linear. TAKKT se mostrou mais prática que AKKT para programação semidefinida não linear. Provamos que, tanto a condição AKKT como a condição TAKKT são condições de otimalidade. Resultados de convergência global para o método de Lagrangiano aumentado foram obtidos. Condições de qualificação estritas foram introduzidas para medir a força dos resultados de convergência global apresentados. Através destas condições de qualificação estritas, foi pos- sível verificar que nossos resultados de convergência global se mostraram melhores do que os conhecidos na literatura. Também apresentamos uma prova para um caso particular da conjectura feita em [AMS07]. Palavras-chave: condições sequenciais de otimalidade, programação semidefinida não linear, programação sob cones simétricos não linear, condições de qualificação estritas. |
id |
USP_2a79312f76cf8f96d4b4c38860e54471 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-23032019-204322 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Condições de otimalidade para otimização cônicaOptimality conditions for conical optimizationCondições de qualificação estritasCondições sequenciais de otimalidadeNonlinear semidefinite programmingNonlinear symmetric cone programmingProgramação semidefinida não linearProgramação sob cones simétricos não linearSequential optimality conditionsStrict qualification conditionsNeste trabalho, realizamos uma extensão da chamada condição Aproximadamente Karush-Kuhn-Tucker (AKKT), inicialmente introduzida em programação não linear [AHM11], para os problemas de otimização sob cones simétricos não linear. Uma condição nova, a qual chamamos Trace AKKT (TAKKT), também foi apresentada para o problema de programação semidefinida não linear. TAKKT se mostrou mais prática que AKKT para programação semidefinida não linear. Provamos que, tanto a condição AKKT como a condição TAKKT são condições de otimalidade. Resultados de convergência global para o método de Lagrangiano aumentado foram obtidos. Condições de qualificação estritas foram introduzidas para medir a força dos resultados de convergência global apresentados. Através destas condições de qualificação estritas, foi pos- sível verificar que nossos resultados de convergência global se mostraram melhores do que os conhecidos na literatura. Também apresentamos uma prova para um caso particular da conjectura feita em [AMS07]. Palavras-chave: condições sequenciais de otimalidade, programação semidefinida não linear, programação sob cones simétricos não linear, condições de qualificação estritas.In this work, we perform an extension of the so-called Approximate Karush-Kuhn-Tucker (AKKT) condition, initially introduced in nonlinear programming [AHM11], for nonlinear symmetric cone pro- gramming. A new condition, which we call Trace AKKT (TAKKT), was also presented for the nonlinear semidefinite programming problem. TAKKT proved to be more practical than AKKT for nonlinear semi- definite programming. We prove that both the AKKT condition and the TAKKT condition are optimality conditions. Results of global convergence for the augmented Lagrangian method were obtained. Strict qua- lification conditions were introduced to measure the strength of the overall convergence results presented. Through these strict qualification conditions, it was possible to verify that our results of global convergence proved to be better than those known in the literature. We also present a proof for a particular case of the conjecture made in [AMS07].Biblioteca Digitais de Teses e Dissertações da USPHaeser, GabrielViana, Daiana dos Santos2019-02-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45132/tde-23032019-204322/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-04-10T00:06:19Zoai:teses.usp.br:tde-23032019-204322Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-04-10T00:06:19Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Condições de otimalidade para otimização cônica Optimality conditions for conical optimization |
title |
Condições de otimalidade para otimização cônica |
spellingShingle |
Condições de otimalidade para otimização cônica Viana, Daiana dos Santos Condições de qualificação estritas Condições sequenciais de otimalidade Nonlinear semidefinite programming Nonlinear symmetric cone programming Programação semidefinida não linear Programação sob cones simétricos não linear Sequential optimality conditions Strict qualification conditions |
title_short |
Condições de otimalidade para otimização cônica |
title_full |
Condições de otimalidade para otimização cônica |
title_fullStr |
Condições de otimalidade para otimização cônica |
title_full_unstemmed |
Condições de otimalidade para otimização cônica |
title_sort |
Condições de otimalidade para otimização cônica |
author |
Viana, Daiana dos Santos |
author_facet |
Viana, Daiana dos Santos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Haeser, Gabriel |
dc.contributor.author.fl_str_mv |
Viana, Daiana dos Santos |
dc.subject.por.fl_str_mv |
Condições de qualificação estritas Condições sequenciais de otimalidade Nonlinear semidefinite programming Nonlinear symmetric cone programming Programação semidefinida não linear Programação sob cones simétricos não linear Sequential optimality conditions Strict qualification conditions |
topic |
Condições de qualificação estritas Condições sequenciais de otimalidade Nonlinear semidefinite programming Nonlinear symmetric cone programming Programação semidefinida não linear Programação sob cones simétricos não linear Sequential optimality conditions Strict qualification conditions |
description |
Neste trabalho, realizamos uma extensão da chamada condição Aproximadamente Karush-Kuhn-Tucker (AKKT), inicialmente introduzida em programação não linear [AHM11], para os problemas de otimização sob cones simétricos não linear. Uma condição nova, a qual chamamos Trace AKKT (TAKKT), também foi apresentada para o problema de programação semidefinida não linear. TAKKT se mostrou mais prática que AKKT para programação semidefinida não linear. Provamos que, tanto a condição AKKT como a condição TAKKT são condições de otimalidade. Resultados de convergência global para o método de Lagrangiano aumentado foram obtidos. Condições de qualificação estritas foram introduzidas para medir a força dos resultados de convergência global apresentados. Através destas condições de qualificação estritas, foi pos- sível verificar que nossos resultados de convergência global se mostraram melhores do que os conhecidos na literatura. Também apresentamos uma prova para um caso particular da conjectura feita em [AMS07]. Palavras-chave: condições sequenciais de otimalidade, programação semidefinida não linear, programação sob cones simétricos não linear, condições de qualificação estritas. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-02-27 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45132/tde-23032019-204322/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45132/tde-23032019-204322/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815257295607562240 |