Soluções analíticas e numéricas de equações não lineares com auxílio de recursos computacionais

Detalhes bibliográficos
Autor(a) principal: Silva, Diego Alves
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/55/55136/tde-31072018-163928/
Resumo: O principal objetivo deste trabalho é apresentar técnicas de solução para equações não lineares. Especificamente, consideramos equações compostas por funções elementares, dentre elas polinomiais, racionais, trigonométricas, exponenciais e logarítmicas, e por operações algébricas de soma, subtração, multiplicação, divisão, potência e raiz. Exploramos técnicas de resolução analítica e numérica. Como não existem fórmulas resolventes de extensão geral, a técnica analítica consiste em aplicar operações elementares que nos levam a equações equivalentes (que têm a mesma solução) até que se consiga uma equação simples, de fácil resolução. Os métodos numéricos abrangem um conjunto maior de equações e obtêm uma aproximação para a solução por meio de um processo que gera uma sequência de aproximações. Entre os métodos numéricos estudados estão Bissecção, de Newton, das Secantes e do Ponto Fixo (ou Iteração Linear). Recursos Computacionais como calculadora, planilha eletrônica e o software Maxima foram utilizados com objetivo de automatizar os cálculos, tornando essa tarefa mais rápida, e também buscando extrair informações adicionais do processo de resolução como criar tabelas e traçar gráficos. Realizamos testes numéricos com equações de diversos graus de dificuldade. Observamos as vantagens, as desvantagens e as limitações de cada método e de cada recurso.
id USP_77dfbdc62b82cbe2a7d4d5eeb4a6ee48
oai_identifier_str oai:teses.usp.br:tde-31072018-163928
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Soluções analíticas e numéricas de equações não lineares com auxílio de recursos computacionaisAnalytical and numerical solutions of nonlinear equations using computational resourcesComputational resourcesEquações não linearesMaximaMaximaMétodos numéricosNonlinear equationsNumerical methodsRecursos computacionaisZeros de funçõesZeros of functionsO principal objetivo deste trabalho é apresentar técnicas de solução para equações não lineares. Especificamente, consideramos equações compostas por funções elementares, dentre elas polinomiais, racionais, trigonométricas, exponenciais e logarítmicas, e por operações algébricas de soma, subtração, multiplicação, divisão, potência e raiz. Exploramos técnicas de resolução analítica e numérica. Como não existem fórmulas resolventes de extensão geral, a técnica analítica consiste em aplicar operações elementares que nos levam a equações equivalentes (que têm a mesma solução) até que se consiga uma equação simples, de fácil resolução. Os métodos numéricos abrangem um conjunto maior de equações e obtêm uma aproximação para a solução por meio de um processo que gera uma sequência de aproximações. Entre os métodos numéricos estudados estão Bissecção, de Newton, das Secantes e do Ponto Fixo (ou Iteração Linear). Recursos Computacionais como calculadora, planilha eletrônica e o software Maxima foram utilizados com objetivo de automatizar os cálculos, tornando essa tarefa mais rápida, e também buscando extrair informações adicionais do processo de resolução como criar tabelas e traçar gráficos. Realizamos testes numéricos com equações de diversos graus de dificuldade. Observamos as vantagens, as desvantagens e as limitações de cada método e de cada recurso.The goal of this work is to present solution techniques for nonlinear equations. Specifically, we consider equations compounded of elementary functions, among them polynomials, rational, trigonometric, exponential and logarithmic, and of algebraic operations of addition, subtraction, multiplication, division, power and root. We explore analytical and numerical resolution techniques. Since there are no general resolvent formulas, the analytic technique consists of applying elementary operations that lead to equivalent equations (which have the same solution) until a simple and easily to solve equation is obtained. Numerical methods cover a larger set of equations and obtain an approximation to the solution by a process which generates a sequence of approximations. Among the numerical methods we studied Bisection, Newton, Secant and Fixed Point (or Linear Iteration) methods. Computational resources such as calculator, spreadsheet and the software Maxima were used in order to automate calculations, making this task faster, as well as seeking for additional information from the resolution process, such as creating tables and graphics. We perform numerical tests, with equations of varying degrees of difficulty. We note the advantages, disadvantages and limitations of each method and resource.Biblioteca Digitais de Teses e Dissertações da USPArtioli, Vanessa RolnikSilva, Diego Alves2017-12-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55136/tde-31072018-163928/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-12T11:40:02Zoai:teses.usp.br:tde-31072018-163928Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-12T11:40:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Soluções analíticas e numéricas de equações não lineares com auxílio de recursos computacionais
Analytical and numerical solutions of nonlinear equations using computational resources
title Soluções analíticas e numéricas de equações não lineares com auxílio de recursos computacionais
spellingShingle Soluções analíticas e numéricas de equações não lineares com auxílio de recursos computacionais
Silva, Diego Alves
Computational resources
Equações não lineares
Maxima
Maxima
Métodos numéricos
Nonlinear equations
Numerical methods
Recursos computacionais
Zeros de funções
Zeros of functions
title_short Soluções analíticas e numéricas de equações não lineares com auxílio de recursos computacionais
title_full Soluções analíticas e numéricas de equações não lineares com auxílio de recursos computacionais
title_fullStr Soluções analíticas e numéricas de equações não lineares com auxílio de recursos computacionais
title_full_unstemmed Soluções analíticas e numéricas de equações não lineares com auxílio de recursos computacionais
title_sort Soluções analíticas e numéricas de equações não lineares com auxílio de recursos computacionais
author Silva, Diego Alves
author_facet Silva, Diego Alves
author_role author
dc.contributor.none.fl_str_mv Artioli, Vanessa Rolnik
dc.contributor.author.fl_str_mv Silva, Diego Alves
dc.subject.por.fl_str_mv Computational resources
Equações não lineares
Maxima
Maxima
Métodos numéricos
Nonlinear equations
Numerical methods
Recursos computacionais
Zeros de funções
Zeros of functions
topic Computational resources
Equações não lineares
Maxima
Maxima
Métodos numéricos
Nonlinear equations
Numerical methods
Recursos computacionais
Zeros de funções
Zeros of functions
description O principal objetivo deste trabalho é apresentar técnicas de solução para equações não lineares. Especificamente, consideramos equações compostas por funções elementares, dentre elas polinomiais, racionais, trigonométricas, exponenciais e logarítmicas, e por operações algébricas de soma, subtração, multiplicação, divisão, potência e raiz. Exploramos técnicas de resolução analítica e numérica. Como não existem fórmulas resolventes de extensão geral, a técnica analítica consiste em aplicar operações elementares que nos levam a equações equivalentes (que têm a mesma solução) até que se consiga uma equação simples, de fácil resolução. Os métodos numéricos abrangem um conjunto maior de equações e obtêm uma aproximação para a solução por meio de um processo que gera uma sequência de aproximações. Entre os métodos numéricos estudados estão Bissecção, de Newton, das Secantes e do Ponto Fixo (ou Iteração Linear). Recursos Computacionais como calculadora, planilha eletrônica e o software Maxima foram utilizados com objetivo de automatizar os cálculos, tornando essa tarefa mais rápida, e também buscando extrair informações adicionais do processo de resolução como criar tabelas e traçar gráficos. Realizamos testes numéricos com equações de diversos graus de dificuldade. Observamos as vantagens, as desvantagens e as limitações de cada método e de cada recurso.
publishDate 2017
dc.date.none.fl_str_mv 2017-12-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55136/tde-31072018-163928/
url http://www.teses.usp.br/teses/disponiveis/55/55136/tde-31072018-163928/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257514569105408