Classification of pseudo-random number generators by complex networks and computational geometry analysis

Detalhes bibliográficos
Autor(a) principal: Alves, Marcela Lopes
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-06012020-171245/
Resumo: Randomness has stimulated mankinds attention and imagination ever since we began to observe the behavior of nature. It was by understanding the randomness and patterns that humans learned to control crops, for example, which led to the creation of the first communities. In the modern world, with the aim of mimicking the randomness of natural phenomena, computers are used to generate sequences that look as random as possible running pseudo-random number generators (PRNG). PRNGs have diverse applications in information security, digital games, simulations, modeling, gambling, arts, among others. Despite this fact, existing methods of randomness measure do not offer a definitive solution to the need of classifying PRNGs. The main methods of randomness measurement consist of statistical tests through which the sequences generated by the algorithms are analyzed. Once PRNGs are analyzed by these test suits, they are considered (un)satisfactory random. This paper explores an aspect that has been neglected in statistical tests: the spatial distribution of pseudo-random sequences. It is conjectured that this distribution is the source of undisclosed patterns in test suites. One way to study this arrangement more depth is using models that explore the relation of values and iterations. The relation of elements in space has to be the basis of the paradigm. This work applies theory of graphs and computational geometry methods to find patterns in pseudo-random sequences. The analyzed sequences are plotted in a Cartesian plan generating a set of points that are converted into graphs considering the Euclidean distance between the points within a radius. The best combination of descriptors formed by measurements of graphs and geometric properties is selected. When patterns emerge, one can point out flaws in the widely used methods for measuring PRNGs quality. It is intended to suggest a complementary approach for the evaluation of PRNGs, contributing to a better classification of the PRNGs and, consequently, to cause improvements in the studies on information security. This includes identifying patterns in sequences generated by algorithms that are considered pseudo-random by current statistical tests and thus identifying the limitations of these assessments.
id USP_8f7111f5bf3f66101789f450f3d2f8fa
oai_identifier_str oai:teses.usp.br:tde-06012020-171245
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Classification of pseudo-random number generators by complex networks and computational geometry analysisClassificação de geradores de números pseudoaleatórios aplicando análise de redes complexas e geometria computacionalAleatoriedadeComplex networksComplex systemsComputational geometryGeometria computacionalRandomnessRedes complexasSistemas complexosRandomness has stimulated mankinds attention and imagination ever since we began to observe the behavior of nature. It was by understanding the randomness and patterns that humans learned to control crops, for example, which led to the creation of the first communities. In the modern world, with the aim of mimicking the randomness of natural phenomena, computers are used to generate sequences that look as random as possible running pseudo-random number generators (PRNG). PRNGs have diverse applications in information security, digital games, simulations, modeling, gambling, arts, among others. Despite this fact, existing methods of randomness measure do not offer a definitive solution to the need of classifying PRNGs. The main methods of randomness measurement consist of statistical tests through which the sequences generated by the algorithms are analyzed. Once PRNGs are analyzed by these test suits, they are considered (un)satisfactory random. This paper explores an aspect that has been neglected in statistical tests: the spatial distribution of pseudo-random sequences. It is conjectured that this distribution is the source of undisclosed patterns in test suites. One way to study this arrangement more depth is using models that explore the relation of values and iterations. The relation of elements in space has to be the basis of the paradigm. This work applies theory of graphs and computational geometry methods to find patterns in pseudo-random sequences. The analyzed sequences are plotted in a Cartesian plan generating a set of points that are converted into graphs considering the Euclidean distance between the points within a radius. The best combination of descriptors formed by measurements of graphs and geometric properties is selected. When patterns emerge, one can point out flaws in the widely used methods for measuring PRNGs quality. It is intended to suggest a complementary approach for the evaluation of PRNGs, contributing to a better classification of the PRNGs and, consequently, to cause improvements in the studies on information security. This includes identifying patterns in sequences generated by algorithms that are considered pseudo-random by current statistical tests and thus identifying the limitations of these assessments.A aleatoriedade tem estimulado a atenção e a imaginação da humanidade desde que começamos a observar o comportamento da natureza. Foi entendendo a aleatoriedades e padrões, que os humanos aprenderam a controlar colheitas, por exemplo, o que levou a criação das primeiras comunidades. No mundo moderno, com o objetivo de imitar a aleatoriedade dos fenômenos naturais, os computadores são usados para gerar sequências que sejam as mais aleatórias possível executando os geradores de números pseudoaleatórios (PRNGs). A pseudoaleatoriedade possui diversas aplicações em segurança da informação, jogos digitais, simulações, modelagem, jogos de azar, artes, entre outros. Apesar disso, os métodos existentes de medida de aleatoriedade não oferecem uma solução definitiva para a necessidade de classificar PRNGs. Os principais métodos de medida de aleatoriedade consistem em testes estatísticos através dos quais as sequências geradas pelos algoritmos são analisadas. Uma vez que PRNGs são analisados por estes testes, eles são considerados ou não satisfatoriamente aleatórios. Este trabalho explora um aspecto que tem sido negligenciado nos testes estatísticos: a distribuição espacial das sequências pseudoaleatórias. É conjecturado que essa distribuição seja fonte de padrões não revelados nas suítes de teste. Uma maneira de estudar esse arranjo com mais profundidade é usando modelos que exploram a relação de valores e as iterações. A relação dos elementos no espaço deve ser a base do paradigma. Este trabalho aplica teoria de grafos e métodos de geometria computacional para encontrar padrões em sequências pseudoaleatórias. As sequências analisadas são plotadas em um plano Cartesiano gerando um conjunto de pontos que são convertidos em grafos considerando a distância euclidiana entre os pontos dentro de um raio. A melhor combinação de descritores formados pelas medidas de grafos e propriedades geométricas é selecionada. Quando os padrões emergirem, pode-se apontar falhas nos métodos amplamente utilizados para classificação de PRNGs. Pretende-se sugerir uma abordagem complementar para a avaliação de PRNGs, contribuindo para uma melhor classificação dos PRNGs e, consequentemente, causar melhorias nos estudos sobre segurança da informação. Isso inclui identificar padrões em sequências geradas por algoritmos que são considerados pseudoaleatórios pelos testes estatísticos atuais e, assim, identificar as limitações dessas avaliações.Biblioteca Digitais de Teses e Dissertações da USPBruno, Odemir MartinezAlves, Marcela Lopes2019-08-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-06012020-171245/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-01-06T22:19:02Zoai:teses.usp.br:tde-06012020-171245Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-01-06T22:19:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Classification of pseudo-random number generators by complex networks and computational geometry analysis
Classificação de geradores de números pseudoaleatórios aplicando análise de redes complexas e geometria computacional
title Classification of pseudo-random number generators by complex networks and computational geometry analysis
spellingShingle Classification of pseudo-random number generators by complex networks and computational geometry analysis
Alves, Marcela Lopes
Aleatoriedade
Complex networks
Complex systems
Computational geometry
Geometria computacional
Randomness
Redes complexas
Sistemas complexos
title_short Classification of pseudo-random number generators by complex networks and computational geometry analysis
title_full Classification of pseudo-random number generators by complex networks and computational geometry analysis
title_fullStr Classification of pseudo-random number generators by complex networks and computational geometry analysis
title_full_unstemmed Classification of pseudo-random number generators by complex networks and computational geometry analysis
title_sort Classification of pseudo-random number generators by complex networks and computational geometry analysis
author Alves, Marcela Lopes
author_facet Alves, Marcela Lopes
author_role author
dc.contributor.none.fl_str_mv Bruno, Odemir Martinez
dc.contributor.author.fl_str_mv Alves, Marcela Lopes
dc.subject.por.fl_str_mv Aleatoriedade
Complex networks
Complex systems
Computational geometry
Geometria computacional
Randomness
Redes complexas
Sistemas complexos
topic Aleatoriedade
Complex networks
Complex systems
Computational geometry
Geometria computacional
Randomness
Redes complexas
Sistemas complexos
description Randomness has stimulated mankinds attention and imagination ever since we began to observe the behavior of nature. It was by understanding the randomness and patterns that humans learned to control crops, for example, which led to the creation of the first communities. In the modern world, with the aim of mimicking the randomness of natural phenomena, computers are used to generate sequences that look as random as possible running pseudo-random number generators (PRNG). PRNGs have diverse applications in information security, digital games, simulations, modeling, gambling, arts, among others. Despite this fact, existing methods of randomness measure do not offer a definitive solution to the need of classifying PRNGs. The main methods of randomness measurement consist of statistical tests through which the sequences generated by the algorithms are analyzed. Once PRNGs are analyzed by these test suits, they are considered (un)satisfactory random. This paper explores an aspect that has been neglected in statistical tests: the spatial distribution of pseudo-random sequences. It is conjectured that this distribution is the source of undisclosed patterns in test suites. One way to study this arrangement more depth is using models that explore the relation of values and iterations. The relation of elements in space has to be the basis of the paradigm. This work applies theory of graphs and computational geometry methods to find patterns in pseudo-random sequences. The analyzed sequences are plotted in a Cartesian plan generating a set of points that are converted into graphs considering the Euclidean distance between the points within a radius. The best combination of descriptors formed by measurements of graphs and geometric properties is selected. When patterns emerge, one can point out flaws in the widely used methods for measuring PRNGs quality. It is intended to suggest a complementary approach for the evaluation of PRNGs, contributing to a better classification of the PRNGs and, consequently, to cause improvements in the studies on information security. This includes identifying patterns in sequences generated by algorithms that are considered pseudo-random by current statistical tests and thus identifying the limitations of these assessments.
publishDate 2019
dc.date.none.fl_str_mv 2019-08-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-06012020-171245/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-06012020-171245/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256756613283840