Introdução ao método dos elementos finitos para as estruturas de comportamento linear.

Detalhes bibliográficos
Autor(a) principal: Andre, Joao Cyro
Data de Publicação: 1976
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/3/3144/tde-06052019-101937/
Resumo: Este trabalho tem como objetivos complementar os requisitos para obtenção do grau de mestre em engenharia e propiciar um texto para os que se iniciam no estudo do método dos elementos finitos. Apresentam-se, no primeiro capítulo, conceitos básicos da teoria da elasticidade importantes no desenvolvimento do tema. No segundo capítulo desenvolvem-se os teoremas variacionais da teoria da elasticidade. Estabelecem-se os teoremas da energia potencial total, da energia potencial complementar total e um conjunto de outros teoremas, com destaque para o de dois campos, devido a Reissner, e o três campos, devido a Oliveira. Introduz-se no terceiro capítulo, o conceito de solução aproximada contínua. Inicialmente apresenta-se um modelo genérico, análogo a todos os modelos contínuos. Em seguida avalia-se o erro global das soluções aproximadas contínuas, no caso de serem compatíveis ou equilibradas, estabelecendo extremos superior e inferior para a energia de deformação da solução exata. Dedica-se o quarto capítulo ao método dos elementos finitos aplicado às estruturas de comportamento linear. Apresenta-se uma visão panorâmica do estágio atual do método, referindo-se aos vários processos e modelos derivados. Estabelecem-se, relativamente ao processo dos deslocamentos, a técnica de discretização propriamente dita e sua justificativa. Finalmente desenvolve-se a formulação de vários elementos, correspondentes aos possíveis modelos derivados do processo dos deslocamentos.Ressalta-se a importância das obras de Oliveira (13) a (20) no desenvolvimento de todo o trabalho, e as de Fung (4) e Sokolnikoff (32), no primeiro capítulo, de Washizu (34), no segundo capítulo, de Prager (30) no terceiro capítulo e Pedro (22), no quarto capítulo. O autor deseja expressar os seus agradecimentos aos professores Decio Leal de Zagottis, Maurício Gertsenchtein e Victor Manuel de Souza Lima, da Escola Politécnica da Universidade de São Paulo, ao professor Jairo Porto, da Escola de Engenharia de Lins, e aos engenheiros José de Oliveira Pedro e Manuel Pinho de Miranda, do Laboratório Nacional de Engenharia Civil de Lisboa, que colaboraram no desenvolvimento deste trabalho.
id USP_ba488074b596f3024a8db52fd631d07f
oai_identifier_str oai:teses.usp.br:tde-06052019-101937
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Introdução ao método dos elementos finitos para as estruturas de comportamento linear.Introduction to the finite element method for linear structural analysis.EstruturasFinite element methodMétodo dos elementos finitosStructuresEste trabalho tem como objetivos complementar os requisitos para obtenção do grau de mestre em engenharia e propiciar um texto para os que se iniciam no estudo do método dos elementos finitos. Apresentam-se, no primeiro capítulo, conceitos básicos da teoria da elasticidade importantes no desenvolvimento do tema. No segundo capítulo desenvolvem-se os teoremas variacionais da teoria da elasticidade. Estabelecem-se os teoremas da energia potencial total, da energia potencial complementar total e um conjunto de outros teoremas, com destaque para o de dois campos, devido a Reissner, e o três campos, devido a Oliveira. Introduz-se no terceiro capítulo, o conceito de solução aproximada contínua. Inicialmente apresenta-se um modelo genérico, análogo a todos os modelos contínuos. Em seguida avalia-se o erro global das soluções aproximadas contínuas, no caso de serem compatíveis ou equilibradas, estabelecendo extremos superior e inferior para a energia de deformação da solução exata. Dedica-se o quarto capítulo ao método dos elementos finitos aplicado às estruturas de comportamento linear. Apresenta-se uma visão panorâmica do estágio atual do método, referindo-se aos vários processos e modelos derivados. Estabelecem-se, relativamente ao processo dos deslocamentos, a técnica de discretização propriamente dita e sua justificativa. Finalmente desenvolve-se a formulação de vários elementos, correspondentes aos possíveis modelos derivados do processo dos deslocamentos.Ressalta-se a importância das obras de Oliveira (13) a (20) no desenvolvimento de todo o trabalho, e as de Fung (4) e Sokolnikoff (32), no primeiro capítulo, de Washizu (34), no segundo capítulo, de Prager (30) no terceiro capítulo e Pedro (22), no quarto capítulo. O autor deseja expressar os seus agradecimentos aos professores Decio Leal de Zagottis, Maurício Gertsenchtein e Victor Manuel de Souza Lima, da Escola Politécnica da Universidade de São Paulo, ao professor Jairo Porto, da Escola de Engenharia de Lins, e aos engenheiros José de Oliveira Pedro e Manuel Pinho de Miranda, do Laboratório Nacional de Engenharia Civil de Lisboa, que colaboraram no desenvolvimento deste trabalho.The purpose of this work is completing the requirements for obtaining the master degree in engineering and providing a text for those who are initiating in the study of the finite-element method. The first chapter refers to the basic concepts of the theory of elasticity being important to the development of this theme. In chapter 2 the variational theorems of the theory of elasticity are developed. The total potential energy theorem, the total complementary potential energy theorem, and a group of other theorems, are established, emphasis being placed on the ones of two fields, due to Reissner, and the ones of three fields, due to Oliveira. It is introduced, in the third chapter, the concept of approximate continuos solution. Initially is presented a general model, analogous to all continuos models. Following, the overall error of the approximate continuous solutions is evaluated, whether compatible or in equilibrium, by establishing upper and lower extremes for the deformation energy of the exact solution. The fourth chapter is dedicated to the finite-element method as applied to structures of linear behavior. An overall view of the present stage of the method, referring to the various processes and models derived, is presented. It is established, as refers the displacement process, the discreting technique proper and its justification. Finally, the formulation of various elements corresponding to the possible models derived from the displacement process, is developed. It must be emphasized the importance of the works published by Oliveira (13) to (20) for the development of the entire work, as well as those by Fung (4) and Sokolnikoff (32), in the first chapter, those by Washizu (34), in the second chapter, those by Prager (30), in the third chapter, and Pedro (22), in the fourth chapter.Biblioteca Digitais de Teses e Dissertações da USPZagottis, Decio Leal deAndre, Joao Cyro1976-03-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3144/tde-06052019-101937/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-06-07T17:41:59Zoai:teses.usp.br:tde-06052019-101937Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-06-07T17:41:59Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Introdução ao método dos elementos finitos para as estruturas de comportamento linear.
Introduction to the finite element method for linear structural analysis.
title Introdução ao método dos elementos finitos para as estruturas de comportamento linear.
spellingShingle Introdução ao método dos elementos finitos para as estruturas de comportamento linear.
Andre, Joao Cyro
Estruturas
Finite element method
Método dos elementos finitos
Structures
title_short Introdução ao método dos elementos finitos para as estruturas de comportamento linear.
title_full Introdução ao método dos elementos finitos para as estruturas de comportamento linear.
title_fullStr Introdução ao método dos elementos finitos para as estruturas de comportamento linear.
title_full_unstemmed Introdução ao método dos elementos finitos para as estruturas de comportamento linear.
title_sort Introdução ao método dos elementos finitos para as estruturas de comportamento linear.
author Andre, Joao Cyro
author_facet Andre, Joao Cyro
author_role author
dc.contributor.none.fl_str_mv Zagottis, Decio Leal de
dc.contributor.author.fl_str_mv Andre, Joao Cyro
dc.subject.por.fl_str_mv Estruturas
Finite element method
Método dos elementos finitos
Structures
topic Estruturas
Finite element method
Método dos elementos finitos
Structures
description Este trabalho tem como objetivos complementar os requisitos para obtenção do grau de mestre em engenharia e propiciar um texto para os que se iniciam no estudo do método dos elementos finitos. Apresentam-se, no primeiro capítulo, conceitos básicos da teoria da elasticidade importantes no desenvolvimento do tema. No segundo capítulo desenvolvem-se os teoremas variacionais da teoria da elasticidade. Estabelecem-se os teoremas da energia potencial total, da energia potencial complementar total e um conjunto de outros teoremas, com destaque para o de dois campos, devido a Reissner, e o três campos, devido a Oliveira. Introduz-se no terceiro capítulo, o conceito de solução aproximada contínua. Inicialmente apresenta-se um modelo genérico, análogo a todos os modelos contínuos. Em seguida avalia-se o erro global das soluções aproximadas contínuas, no caso de serem compatíveis ou equilibradas, estabelecendo extremos superior e inferior para a energia de deformação da solução exata. Dedica-se o quarto capítulo ao método dos elementos finitos aplicado às estruturas de comportamento linear. Apresenta-se uma visão panorâmica do estágio atual do método, referindo-se aos vários processos e modelos derivados. Estabelecem-se, relativamente ao processo dos deslocamentos, a técnica de discretização propriamente dita e sua justificativa. Finalmente desenvolve-se a formulação de vários elementos, correspondentes aos possíveis modelos derivados do processo dos deslocamentos.Ressalta-se a importância das obras de Oliveira (13) a (20) no desenvolvimento de todo o trabalho, e as de Fung (4) e Sokolnikoff (32), no primeiro capítulo, de Washizu (34), no segundo capítulo, de Prager (30) no terceiro capítulo e Pedro (22), no quarto capítulo. O autor deseja expressar os seus agradecimentos aos professores Decio Leal de Zagottis, Maurício Gertsenchtein e Victor Manuel de Souza Lima, da Escola Politécnica da Universidade de São Paulo, ao professor Jairo Porto, da Escola de Engenharia de Lins, e aos engenheiros José de Oliveira Pedro e Manuel Pinho de Miranda, do Laboratório Nacional de Engenharia Civil de Lisboa, que colaboraram no desenvolvimento deste trabalho.
publishDate 1976
dc.date.none.fl_str_mv 1976-03-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3144/tde-06052019-101937/
url http://www.teses.usp.br/teses/disponiveis/3/3144/tde-06052019-101937/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256714798170112