Extensões por um ponto de álgebras inclinadas mansas

Detalhes bibliográficos
Autor(a) principal: Chalom, Alegria Gladys
Data de Publicação: 1998
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-021208/
Resumo: Sabemos por [P1] que, dada uma álgebra 'lâmbda'mansa, teremos que a forma quadrática de Tits 'q IND.'lâmbda' é fracamente não negativa, isto é, se 'lâmbda é mansa então 'q IND.'lâmbda'(z)'>OU='0, para todo z vetor-dimensão de coordenadas positivas. Além disso, a recíproca foi provada para algumas famílias de álgebras, porém não é válida em geral. O propósito deste trabalho é provar que, para certas categorias vectorespaciais selvagens IK = Hom(M,B - mod), onde B é uma álgebra inclinada mansa e M é um módulo indecomponível, teremos a forma 'q IND.B[M]' fortemente indefinida, o que nos fornece recíprocas parciais do teorema acima
id USP_bcd182dcbdbb49d02e87829ed665b543
oai_identifier_str oai:teses.usp.br:tde-20210729-021208
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Extensões por um ponto de álgebras inclinadas mansasnot availableÁlgebraSabemos por [P1] que, dada uma álgebra 'lâmbda'mansa, teremos que a forma quadrática de Tits 'q IND.'lâmbda' é fracamente não negativa, isto é, se 'lâmbda é mansa então 'q IND.'lâmbda'(z)'>OU='0, para todo z vetor-dimensão de coordenadas positivas. Além disso, a recíproca foi provada para algumas famílias de álgebras, porém não é válida em geral. O propósito deste trabalho é provar que, para certas categorias vectorespaciais selvagens IK = Hom(M,B - mod), onde B é uma álgebra inclinada mansa e M é um módulo indecomponível, teremos a forma 'q IND.B[M]' fortemente indefinida, o que nos fornece recíprocas parciais do teorema acimaWe know, after [P1], that, given a tame algebra 'lâmbda', the Tits form 'q IND.'lâmbda' is weakly non negative. That is, if 'lâmbda' is tame then 'q IND.'lâmbda'(z)'>OU='0, for any dimension-vector z of positive coordinates. Moreover, the converse has been shown for some families of algebras, but it is not true in general. The purpose of this work is to show that for certain wild vectorspace categories IK = Hom(M, B - mod), where B is tame tilted and M is an indecomposable B-module we have 'q IND.B[M]' strongly indefinite. This will give parcial converses of the above theoremBiblioteca Digitais de Teses e Dissertações da USPGoldschmidt, Hector Alfredo MerklenChalom, Alegria Gladys1998-07-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-021208/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-07T17:48:47Zoai:teses.usp.br:tde-20210729-021208Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-07T17:48:47Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Extensões por um ponto de álgebras inclinadas mansas
not available
title Extensões por um ponto de álgebras inclinadas mansas
spellingShingle Extensões por um ponto de álgebras inclinadas mansas
Chalom, Alegria Gladys
Álgebra
title_short Extensões por um ponto de álgebras inclinadas mansas
title_full Extensões por um ponto de álgebras inclinadas mansas
title_fullStr Extensões por um ponto de álgebras inclinadas mansas
title_full_unstemmed Extensões por um ponto de álgebras inclinadas mansas
title_sort Extensões por um ponto de álgebras inclinadas mansas
author Chalom, Alegria Gladys
author_facet Chalom, Alegria Gladys
author_role author
dc.contributor.none.fl_str_mv Goldschmidt, Hector Alfredo Merklen
dc.contributor.author.fl_str_mv Chalom, Alegria Gladys
dc.subject.por.fl_str_mv Álgebra
topic Álgebra
description Sabemos por [P1] que, dada uma álgebra 'lâmbda'mansa, teremos que a forma quadrática de Tits 'q IND.'lâmbda' é fracamente não negativa, isto é, se 'lâmbda é mansa então 'q IND.'lâmbda'(z)'>OU='0, para todo z vetor-dimensão de coordenadas positivas. Além disso, a recíproca foi provada para algumas famílias de álgebras, porém não é válida em geral. O propósito deste trabalho é provar que, para certas categorias vectorespaciais selvagens IK = Hom(M,B - mod), onde B é uma álgebra inclinada mansa e M é um módulo indecomponível, teremos a forma 'q IND.B[M]' fortemente indefinida, o que nos fornece recíprocas parciais do teorema acima
publishDate 1998
dc.date.none.fl_str_mv 1998-07-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-021208/
url https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-021208/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815256524692389888