Extensões por um ponto de álgebras inclinadas mansas
Autor(a) principal: | |
---|---|
Data de Publicação: | 1998 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-021208/ |
Resumo: | Sabemos por [P1] que, dada uma álgebra 'lâmbda'mansa, teremos que a forma quadrática de Tits 'q IND.'lâmbda' é fracamente não negativa, isto é, se 'lâmbda é mansa então 'q IND.'lâmbda'(z)'>OU='0, para todo z vetor-dimensão de coordenadas positivas. Além disso, a recíproca foi provada para algumas famílias de álgebras, porém não é válida em geral. O propósito deste trabalho é provar que, para certas categorias vectorespaciais selvagens IK = Hom(M,B - mod), onde B é uma álgebra inclinada mansa e M é um módulo indecomponível, teremos a forma 'q IND.B[M]' fortemente indefinida, o que nos fornece recíprocas parciais do teorema acima |
id |
USP_bcd182dcbdbb49d02e87829ed665b543 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-20210729-021208 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
Extensões por um ponto de álgebras inclinadas mansasnot availableÁlgebraSabemos por [P1] que, dada uma álgebra 'lâmbda'mansa, teremos que a forma quadrática de Tits 'q IND.'lâmbda' é fracamente não negativa, isto é, se 'lâmbda é mansa então 'q IND.'lâmbda'(z)'>OU='0, para todo z vetor-dimensão de coordenadas positivas. Além disso, a recíproca foi provada para algumas famílias de álgebras, porém não é válida em geral. O propósito deste trabalho é provar que, para certas categorias vectorespaciais selvagens IK = Hom(M,B - mod), onde B é uma álgebra inclinada mansa e M é um módulo indecomponível, teremos a forma 'q IND.B[M]' fortemente indefinida, o que nos fornece recíprocas parciais do teorema acimaWe know, after [P1], that, given a tame algebra 'lâmbda', the Tits form 'q IND.'lâmbda' is weakly non negative. That is, if 'lâmbda' is tame then 'q IND.'lâmbda'(z)'>OU='0, for any dimension-vector z of positive coordinates. Moreover, the converse has been shown for some families of algebras, but it is not true in general. The purpose of this work is to show that for certain wild vectorspace categories IK = Hom(M, B - mod), where B is tame tilted and M is an indecomposable B-module we have 'q IND.B[M]' strongly indefinite. This will give parcial converses of the above theoremBiblioteca Digitais de Teses e Dissertações da USPGoldschmidt, Hector Alfredo MerklenChalom, Alegria Gladys1998-07-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-021208/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-07T17:48:47Zoai:teses.usp.br:tde-20210729-021208Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-07T17:48:47Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Extensões por um ponto de álgebras inclinadas mansas not available |
title |
Extensões por um ponto de álgebras inclinadas mansas |
spellingShingle |
Extensões por um ponto de álgebras inclinadas mansas Chalom, Alegria Gladys Álgebra |
title_short |
Extensões por um ponto de álgebras inclinadas mansas |
title_full |
Extensões por um ponto de álgebras inclinadas mansas |
title_fullStr |
Extensões por um ponto de álgebras inclinadas mansas |
title_full_unstemmed |
Extensões por um ponto de álgebras inclinadas mansas |
title_sort |
Extensões por um ponto de álgebras inclinadas mansas |
author |
Chalom, Alegria Gladys |
author_facet |
Chalom, Alegria Gladys |
author_role |
author |
dc.contributor.none.fl_str_mv |
Goldschmidt, Hector Alfredo Merklen |
dc.contributor.author.fl_str_mv |
Chalom, Alegria Gladys |
dc.subject.por.fl_str_mv |
Álgebra |
topic |
Álgebra |
description |
Sabemos por [P1] que, dada uma álgebra 'lâmbda'mansa, teremos que a forma quadrática de Tits 'q IND.'lâmbda' é fracamente não negativa, isto é, se 'lâmbda é mansa então 'q IND.'lâmbda'(z)'>OU='0, para todo z vetor-dimensão de coordenadas positivas. Além disso, a recíproca foi provada para algumas famílias de álgebras, porém não é válida em geral. O propósito deste trabalho é provar que, para certas categorias vectorespaciais selvagens IK = Hom(M,B - mod), onde B é uma álgebra inclinada mansa e M é um módulo indecomponível, teremos a forma 'q IND.B[M]' fortemente indefinida, o que nos fornece recíprocas parciais do teorema acima |
publishDate |
1998 |
dc.date.none.fl_str_mv |
1998-07-24 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-021208/ |
url |
https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-021208/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256524692389888 |