O radical de Jacobson de anéis de polinômios diferenciais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05102015-161321/ |
Resumo: | O objetivo desta dissertação é estudar o radical de Jacobson de anéis de polinômios diferenciais. Mostramos um resultado de M. Ferrero, K. Kishimoro, K. Motose, que mostra que no caso geral, o radical de um anel de polinômios diferenciais é um anel de polinômios diferenciais sobre algum ideal do anel dos coeficientes. Assumindo que o anel dos coeficientes satisfaça uma identidade polinomial, mostramos seguindo B. Madill que este ideal é um ideal nil. Se o anel dos coeficientes é adicionalmente localmente nilpotente, seguindo J. Bell, B. Madill, F. Shinko, mostramos que o anel de polinômios diferenciais será localmente nilpotente. Ainda seguindo J. Bell et al, se o anel dos coeficientes é uma álgebra sobre um corpo de característica zero e tal álgebra satisfaz uma identidade polinomial, mostramos que o ideal nil é o radical de Köthe. Para tais demonstrações, cobriremos os tópicos preliminares necessários para entender os enunciados: radical nil, radical de Levitzki, radical de Baer, radical de Jacobson e propriedades, anéis PI, polinômios centrais, teorema de Kaplansky. |
id |
USP_bff0a750e16d51f64e576d5f1337ceca |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-05102015-161321 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
O radical de Jacobson de anéis de polinômios diferenciaisThe Jacobson radical of differential polynomial ringsAnéis de polinômios diferenciaisAnéis PIDifferential polynomial ringsJacobson radicalPI-ringsRadical de JacobsonO objetivo desta dissertação é estudar o radical de Jacobson de anéis de polinômios diferenciais. Mostramos um resultado de M. Ferrero, K. Kishimoro, K. Motose, que mostra que no caso geral, o radical de um anel de polinômios diferenciais é um anel de polinômios diferenciais sobre algum ideal do anel dos coeficientes. Assumindo que o anel dos coeficientes satisfaça uma identidade polinomial, mostramos seguindo B. Madill que este ideal é um ideal nil. Se o anel dos coeficientes é adicionalmente localmente nilpotente, seguindo J. Bell, B. Madill, F. Shinko, mostramos que o anel de polinômios diferenciais será localmente nilpotente. Ainda seguindo J. Bell et al, se o anel dos coeficientes é uma álgebra sobre um corpo de característica zero e tal álgebra satisfaz uma identidade polinomial, mostramos que o ideal nil é o radical de Köthe. Para tais demonstrações, cobriremos os tópicos preliminares necessários para entender os enunciados: radical nil, radical de Levitzki, radical de Baer, radical de Jacobson e propriedades, anéis PI, polinômios centrais, teorema de Kaplansky.The aim of this work is to study the Jacobson radical of differential polynomial rings. We show a result of M. Ferrero, K. Kishimoto, K. Motose, which shows that in general, the radical of a differential polynomial ring is a differential polynomial ring over some ideal of the ring of coefficients. Assuming that the ring of coefficients satisfies a polynomial identity, we show following B. Madill that this ideal is nil. If the ring of coefficients is additionally locally nilpotent, following J. Bell, B. Madill, F. Shinko, we show that the differential polynomial ring is locally nilpotent. Still following J. Bell et al, if the ring of coefficients is an algebra over a field of zero characteristic and this algebra satisfies a polynomial identity, we show that the nil ideal is the Köthe radical. For the proofs, we cover the preliminary topics necessary for understanding the statements: nil radical, Levitzki radical, Baer radical, Jacobson radical and its properties, PI-rings, central polynomials, Kaplanskys theorem.Biblioteca Digitais de Teses e Dissertações da USPMurakami, Lucia Satie IkemotoSantos Filho, Gilson Reis dos2015-08-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45131/tde-05102015-161321/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:06:17Zoai:teses.usp.br:tde-05102015-161321Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:06:17Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
O radical de Jacobson de anéis de polinômios diferenciais The Jacobson radical of differential polynomial rings |
title |
O radical de Jacobson de anéis de polinômios diferenciais |
spellingShingle |
O radical de Jacobson de anéis de polinômios diferenciais Santos Filho, Gilson Reis dos Anéis de polinômios diferenciais Anéis PI Differential polynomial rings Jacobson radical PI-rings Radical de Jacobson |
title_short |
O radical de Jacobson de anéis de polinômios diferenciais |
title_full |
O radical de Jacobson de anéis de polinômios diferenciais |
title_fullStr |
O radical de Jacobson de anéis de polinômios diferenciais |
title_full_unstemmed |
O radical de Jacobson de anéis de polinômios diferenciais |
title_sort |
O radical de Jacobson de anéis de polinômios diferenciais |
author |
Santos Filho, Gilson Reis dos |
author_facet |
Santos Filho, Gilson Reis dos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Murakami, Lucia Satie Ikemoto |
dc.contributor.author.fl_str_mv |
Santos Filho, Gilson Reis dos |
dc.subject.por.fl_str_mv |
Anéis de polinômios diferenciais Anéis PI Differential polynomial rings Jacobson radical PI-rings Radical de Jacobson |
topic |
Anéis de polinômios diferenciais Anéis PI Differential polynomial rings Jacobson radical PI-rings Radical de Jacobson |
description |
O objetivo desta dissertação é estudar o radical de Jacobson de anéis de polinômios diferenciais. Mostramos um resultado de M. Ferrero, K. Kishimoro, K. Motose, que mostra que no caso geral, o radical de um anel de polinômios diferenciais é um anel de polinômios diferenciais sobre algum ideal do anel dos coeficientes. Assumindo que o anel dos coeficientes satisfaça uma identidade polinomial, mostramos seguindo B. Madill que este ideal é um ideal nil. Se o anel dos coeficientes é adicionalmente localmente nilpotente, seguindo J. Bell, B. Madill, F. Shinko, mostramos que o anel de polinômios diferenciais será localmente nilpotente. Ainda seguindo J. Bell et al, se o anel dos coeficientes é uma álgebra sobre um corpo de característica zero e tal álgebra satisfaz uma identidade polinomial, mostramos que o ideal nil é o radical de Köthe. Para tais demonstrações, cobriremos os tópicos preliminares necessários para entender os enunciados: radical nil, radical de Levitzki, radical de Baer, radical de Jacobson e propriedades, anéis PI, polinômios centrais, teorema de Kaplansky. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-08-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05102015-161321/ |
url |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05102015-161321/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256746261741568 |