Onboard Double Q-Learning for Airborne Data Capture in Wireless Powered IoT Networks

Detalhes bibliográficos
Autor(a) principal: Li, Kai
Data de Publicação: 2020
Outros Autores: Ni, Wei, Wei, Bo, Tovar, Eduardo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/16128
Resumo: This letter studies the use of Unmanned Aerial Vehicles (UAVs) in Internet-of-Things (IoT) networks, where the UAV with microwave power transfer (MPT) capability is employed to hover over the area of interest, charging IoT nodes remotely and collecting their data. Scheduling MPT and data transmission is critical to reduce the data packet loss resulting from buffer overflows and channel fading. In practice, the prior knowledge of the battery level and data queue length of the IoT nodes is not available at the UAV. A new onboard double Q-learning scheduling algorithm is proposed to optimally select the IoT node to be interrogated for data collection and MPT along the flight trajectory of the UAV, thereby minimizing asymptotically the packet loss of the IoT networks. Simulations confirm the superiority of our algorithm to Q-learning based alternatives in terms of packet loss and learning efficiency/speed.
id RCAP_3a5e138959d216cd7cca9eef156ad9be
oai_identifier_str oai:recipp.ipp.pt:10400.22/16128
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Onboard Double Q-Learning for Airborne Data Capture in Wireless Powered IoT NetworksIntelligent transportation systemsUnmanned vehiclesUnmanned aerial vehiclesThis letter studies the use of Unmanned Aerial Vehicles (UAVs) in Internet-of-Things (IoT) networks, where the UAV with microwave power transfer (MPT) capability is employed to hover over the area of interest, charging IoT nodes remotely and collecting their data. Scheduling MPT and data transmission is critical to reduce the data packet loss resulting from buffer overflows and channel fading. In practice, the prior knowledge of the battery level and data queue length of the IoT nodes is not available at the UAV. A new onboard double Q-learning scheduling algorithm is proposed to optimally select the IoT node to be interrogated for data collection and MPT along the flight trajectory of the UAV, thereby minimizing asymptotically the packet loss of the IoT networks. Simulations confirm the superiority of our algorithm to Q-learning based alternatives in terms of packet loss and learning efficiency/speed.Institute of Electrical and Electronics EngineersRepositório Científico do Instituto Politécnico do PortoLi, KaiNi, WeiWei, BoTovar, Eduardo20202119-01-01T00:00:00Z2020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/16128eng2576-315610.1109/LNET.2020.2989130metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:02:22Zoai:recipp.ipp.pt:10400.22/16128Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:35:50.736742Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Onboard Double Q-Learning for Airborne Data Capture in Wireless Powered IoT Networks
title Onboard Double Q-Learning for Airborne Data Capture in Wireless Powered IoT Networks
spellingShingle Onboard Double Q-Learning for Airborne Data Capture in Wireless Powered IoT Networks
Li, Kai
Intelligent transportation systems
Unmanned vehicles
Unmanned aerial vehicles
title_short Onboard Double Q-Learning for Airborne Data Capture in Wireless Powered IoT Networks
title_full Onboard Double Q-Learning for Airborne Data Capture in Wireless Powered IoT Networks
title_fullStr Onboard Double Q-Learning for Airborne Data Capture in Wireless Powered IoT Networks
title_full_unstemmed Onboard Double Q-Learning for Airborne Data Capture in Wireless Powered IoT Networks
title_sort Onboard Double Q-Learning for Airborne Data Capture in Wireless Powered IoT Networks
author Li, Kai
author_facet Li, Kai
Ni, Wei
Wei, Bo
Tovar, Eduardo
author_role author
author2 Ni, Wei
Wei, Bo
Tovar, Eduardo
author2_role author
author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Li, Kai
Ni, Wei
Wei, Bo
Tovar, Eduardo
dc.subject.por.fl_str_mv Intelligent transportation systems
Unmanned vehicles
Unmanned aerial vehicles
topic Intelligent transportation systems
Unmanned vehicles
Unmanned aerial vehicles
description This letter studies the use of Unmanned Aerial Vehicles (UAVs) in Internet-of-Things (IoT) networks, where the UAV with microwave power transfer (MPT) capability is employed to hover over the area of interest, charging IoT nodes remotely and collecting their data. Scheduling MPT and data transmission is critical to reduce the data packet loss resulting from buffer overflows and channel fading. In practice, the prior knowledge of the battery level and data queue length of the IoT nodes is not available at the UAV. A new onboard double Q-learning scheduling algorithm is proposed to optimally select the IoT node to be interrogated for data collection and MPT along the flight trajectory of the UAV, thereby minimizing asymptotically the packet loss of the IoT networks. Simulations confirm the superiority of our algorithm to Q-learning based alternatives in terms of packet loss and learning efficiency/speed.
publishDate 2020
dc.date.none.fl_str_mv 2020
2020-01-01T00:00:00Z
2119-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/16128
url http://hdl.handle.net/10400.22/16128
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2576-3156
10.1109/LNET.2020.2989130
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131449812582400