Modelling volatility by variance decomposition

Detalhes bibliográficos
Autor(a) principal: Amado, Cristina
Data de Publicação: 2011
Outros Autores: Teräsvirta, Timo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/11660
Resumo: In this paper, we propose two parametric alternatives to the standard GARCH model. They allow the variance of the model to have a smooth time-varying structure of either additive or multiplicative type. The suggested parameterisations describe both nonlinearity and structural change in the conditional and unconditional variances where the transition between regimes over time is smooth. The main focus is on the multiplicative decom- position that decomposes the variance into an unconditional and conditional component. A modelling strategy for the time-varying GARCH model based on the multiplicative decomposition of the variance is developed. It is heavily dependent on Lagrange multiplier type misspeci.cation tests. Finite-sample properties of the strategy and tests are examined by simulation. An empirical application to daily stock returns and another one to daily exchange rate returns illustrate the functioning and properties of our modelling strategy in practice. The results show that the long memory type behaviour of the sample autocorrelation functions of the absolute returns can also be explained by deterministic changes in the unconditional variance.
id RCAP_a6ee4b69a9611a5006ec69e429e31472
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/11660
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Modelling volatility by variance decompositionConditional heteroskedasticityTime-varying parameter modelStructural changeLagrange multiplier testMisspecification testNonlinear time seriesIn this paper, we propose two parametric alternatives to the standard GARCH model. They allow the variance of the model to have a smooth time-varying structure of either additive or multiplicative type. The suggested parameterisations describe both nonlinearity and structural change in the conditional and unconditional variances where the transition between regimes over time is smooth. The main focus is on the multiplicative decom- position that decomposes the variance into an unconditional and conditional component. A modelling strategy for the time-varying GARCH model based on the multiplicative decomposition of the variance is developed. It is heavily dependent on Lagrange multiplier type misspeci.cation tests. Finite-sample properties of the strategy and tests are examined by simulation. An empirical application to daily stock returns and another one to daily exchange rate returns illustrate the functioning and properties of our modelling strategy in practice. The results show that the long memory type behaviour of the sample autocorrelation functions of the absolute returns can also be explained by deterministic changes in the unconditional variance.Fundação para a Ciência e a Tecnologia (FCT)Danish National Research FoundationUniversidade do Minho. Núcleo de Investigação em Políticas Económicas (NIPE)Universidade do MinhoAmado, CristinaTeräsvirta, Timo20112011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/11660eng“NIPE Working Paper”. 1 (2011) 1-43.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:47:22Zoai:repositorium.sdum.uminho.pt:1822/11660Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:45:28.366067Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Modelling volatility by variance decomposition
title Modelling volatility by variance decomposition
spellingShingle Modelling volatility by variance decomposition
Amado, Cristina
Conditional heteroskedasticity
Time-varying parameter model
Structural change
Lagrange multiplier test
Misspecification test
Nonlinear time series
title_short Modelling volatility by variance decomposition
title_full Modelling volatility by variance decomposition
title_fullStr Modelling volatility by variance decomposition
title_full_unstemmed Modelling volatility by variance decomposition
title_sort Modelling volatility by variance decomposition
author Amado, Cristina
author_facet Amado, Cristina
Teräsvirta, Timo
author_role author
author2 Teräsvirta, Timo
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Amado, Cristina
Teräsvirta, Timo
dc.subject.por.fl_str_mv Conditional heteroskedasticity
Time-varying parameter model
Structural change
Lagrange multiplier test
Misspecification test
Nonlinear time series
topic Conditional heteroskedasticity
Time-varying parameter model
Structural change
Lagrange multiplier test
Misspecification test
Nonlinear time series
description In this paper, we propose two parametric alternatives to the standard GARCH model. They allow the variance of the model to have a smooth time-varying structure of either additive or multiplicative type. The suggested parameterisations describe both nonlinearity and structural change in the conditional and unconditional variances where the transition between regimes over time is smooth. The main focus is on the multiplicative decom- position that decomposes the variance into an unconditional and conditional component. A modelling strategy for the time-varying GARCH model based on the multiplicative decomposition of the variance is developed. It is heavily dependent on Lagrange multiplier type misspeci.cation tests. Finite-sample properties of the strategy and tests are examined by simulation. An empirical application to daily stock returns and another one to daily exchange rate returns illustrate the functioning and properties of our modelling strategy in practice. The results show that the long memory type behaviour of the sample autocorrelation functions of the absolute returns can also be explained by deterministic changes in the unconditional variance.
publishDate 2011
dc.date.none.fl_str_mv 2011
2011-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/11660
url http://hdl.handle.net/1822/11660
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv “NIPE Working Paper”. 1 (2011) 1-43.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade do Minho. Núcleo de Investigação em Políticas Económicas (NIPE)
publisher.none.fl_str_mv Universidade do Minho. Núcleo de Investigação em Políticas Económicas (NIPE)
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133019828649984