Modelling volatility by variance decomposition
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/11660 |
Resumo: | In this paper, we propose two parametric alternatives to the standard GARCH model. They allow the variance of the model to have a smooth time-varying structure of either additive or multiplicative type. The suggested parameterisations describe both nonlinearity and structural change in the conditional and unconditional variances where the transition between regimes over time is smooth. The main focus is on the multiplicative decom- position that decomposes the variance into an unconditional and conditional component. A modelling strategy for the time-varying GARCH model based on the multiplicative decomposition of the variance is developed. It is heavily dependent on Lagrange multiplier type misspeci.cation tests. Finite-sample properties of the strategy and tests are examined by simulation. An empirical application to daily stock returns and another one to daily exchange rate returns illustrate the functioning and properties of our modelling strategy in practice. The results show that the long memory type behaviour of the sample autocorrelation functions of the absolute returns can also be explained by deterministic changes in the unconditional variance. |
id |
RCAP_a6ee4b69a9611a5006ec69e429e31472 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/11660 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Modelling volatility by variance decompositionConditional heteroskedasticityTime-varying parameter modelStructural changeLagrange multiplier testMisspecification testNonlinear time seriesIn this paper, we propose two parametric alternatives to the standard GARCH model. They allow the variance of the model to have a smooth time-varying structure of either additive or multiplicative type. The suggested parameterisations describe both nonlinearity and structural change in the conditional and unconditional variances where the transition between regimes over time is smooth. The main focus is on the multiplicative decom- position that decomposes the variance into an unconditional and conditional component. A modelling strategy for the time-varying GARCH model based on the multiplicative decomposition of the variance is developed. It is heavily dependent on Lagrange multiplier type misspeci.cation tests. Finite-sample properties of the strategy and tests are examined by simulation. An empirical application to daily stock returns and another one to daily exchange rate returns illustrate the functioning and properties of our modelling strategy in practice. The results show that the long memory type behaviour of the sample autocorrelation functions of the absolute returns can also be explained by deterministic changes in the unconditional variance.Fundação para a Ciência e a Tecnologia (FCT)Danish National Research FoundationUniversidade do Minho. Núcleo de Investigação em Políticas Económicas (NIPE)Universidade do MinhoAmado, CristinaTeräsvirta, Timo20112011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/11660eng“NIPE Working Paper”. 1 (2011) 1-43.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:47:22Zoai:repositorium.sdum.uminho.pt:1822/11660Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:45:28.366067Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Modelling volatility by variance decomposition |
title |
Modelling volatility by variance decomposition |
spellingShingle |
Modelling volatility by variance decomposition Amado, Cristina Conditional heteroskedasticity Time-varying parameter model Structural change Lagrange multiplier test Misspecification test Nonlinear time series |
title_short |
Modelling volatility by variance decomposition |
title_full |
Modelling volatility by variance decomposition |
title_fullStr |
Modelling volatility by variance decomposition |
title_full_unstemmed |
Modelling volatility by variance decomposition |
title_sort |
Modelling volatility by variance decomposition |
author |
Amado, Cristina |
author_facet |
Amado, Cristina Teräsvirta, Timo |
author_role |
author |
author2 |
Teräsvirta, Timo |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Amado, Cristina Teräsvirta, Timo |
dc.subject.por.fl_str_mv |
Conditional heteroskedasticity Time-varying parameter model Structural change Lagrange multiplier test Misspecification test Nonlinear time series |
topic |
Conditional heteroskedasticity Time-varying parameter model Structural change Lagrange multiplier test Misspecification test Nonlinear time series |
description |
In this paper, we propose two parametric alternatives to the standard GARCH model. They allow the variance of the model to have a smooth time-varying structure of either additive or multiplicative type. The suggested parameterisations describe both nonlinearity and structural change in the conditional and unconditional variances where the transition between regimes over time is smooth. The main focus is on the multiplicative decom- position that decomposes the variance into an unconditional and conditional component. A modelling strategy for the time-varying GARCH model based on the multiplicative decomposition of the variance is developed. It is heavily dependent on Lagrange multiplier type misspeci.cation tests. Finite-sample properties of the strategy and tests are examined by simulation. An empirical application to daily stock returns and another one to daily exchange rate returns illustrate the functioning and properties of our modelling strategy in practice. The results show that the long memory type behaviour of the sample autocorrelation functions of the absolute returns can also be explained by deterministic changes in the unconditional variance. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 2011-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/11660 |
url |
http://hdl.handle.net/1822/11660 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
“NIPE Working Paper”. 1 (2011) 1-43. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade do Minho. Núcleo de Investigação em Políticas Económicas (NIPE) |
publisher.none.fl_str_mv |
Universidade do Minho. Núcleo de Investigação em Políticas Económicas (NIPE) |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133019828649984 |