On a ternary generalization of Jordan algebras

Detalhes bibliográficos
Autor(a) principal: Kaygorodov, Ivan
Data de Publicação: 2019
Outros Autores: Pozhidaev, Alexander, Saraiva, Paulo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/89485
https://doi.org/10.1080/03081087.2018.1443426
Resumo: Based on the relation between the notions of Lie triple systems and Jordan algebras, we introduce the n-ary Jordan algebras, an n-ary generalization of Jordan algebras obtained via the generalization of the following property [R_x; R_y] \in Der (A); where A is an n-ary algebra. Next, we study a ternary example of these algebras. Finally, based on the construction of a family of ternary algebras defined by means of the Cayley-Dickson algebras, we present an example of a ternary D_{x,y}-derivation algebra (n-ary D_{x,y}-derivation algebras are the non-commutative version of n-ary Jordan algebras).
id RCAP_c27b29b8c9718b988cbcd48498d3a826
oai_identifier_str oai:estudogeral.uc.pt:10316/89485
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On a ternary generalization of Jordan algebrasJordan algebras; non-commutative Jordan algebras; derivations; n-ary algebras; Lie triple systems; generalized Lie algebras; Cayley–Dickson construction; TKK constructionBased on the relation between the notions of Lie triple systems and Jordan algebras, we introduce the n-ary Jordan algebras, an n-ary generalization of Jordan algebras obtained via the generalization of the following property [R_x; R_y] \in Der (A); where A is an n-ary algebra. Next, we study a ternary example of these algebras. Finally, based on the construction of a family of ternary algebras defined by means of the Cayley-Dickson algebras, we present an example of a ternary D_{x,y}-derivation algebra (n-ary D_{x,y}-derivation algebras are the non-commutative version of n-ary Jordan algebras).Taylor & Francis2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/89485http://hdl.handle.net/10316/89485https://doi.org/10.1080/03081087.2018.1443426enghttps://www.tandfonline.com/doi/abs/10.1080/03081087.2018.1443426?journalCode=glma20Kaygorodov, IvanPozhidaev, AlexanderSaraiva, Pauloinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-05-25T01:34:39Zoai:estudogeral.uc.pt:10316/89485Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:09:46.957790Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On a ternary generalization of Jordan algebras
title On a ternary generalization of Jordan algebras
spellingShingle On a ternary generalization of Jordan algebras
Kaygorodov, Ivan
Jordan algebras; non-commutative Jordan algebras; derivations; n-ary algebras; Lie triple systems; generalized Lie algebras; Cayley–Dickson construction; TKK construction
title_short On a ternary generalization of Jordan algebras
title_full On a ternary generalization of Jordan algebras
title_fullStr On a ternary generalization of Jordan algebras
title_full_unstemmed On a ternary generalization of Jordan algebras
title_sort On a ternary generalization of Jordan algebras
author Kaygorodov, Ivan
author_facet Kaygorodov, Ivan
Pozhidaev, Alexander
Saraiva, Paulo
author_role author
author2 Pozhidaev, Alexander
Saraiva, Paulo
author2_role author
author
dc.contributor.author.fl_str_mv Kaygorodov, Ivan
Pozhidaev, Alexander
Saraiva, Paulo
dc.subject.por.fl_str_mv Jordan algebras; non-commutative Jordan algebras; derivations; n-ary algebras; Lie triple systems; generalized Lie algebras; Cayley–Dickson construction; TKK construction
topic Jordan algebras; non-commutative Jordan algebras; derivations; n-ary algebras; Lie triple systems; generalized Lie algebras; Cayley–Dickson construction; TKK construction
description Based on the relation between the notions of Lie triple systems and Jordan algebras, we introduce the n-ary Jordan algebras, an n-ary generalization of Jordan algebras obtained via the generalization of the following property [R_x; R_y] \in Der (A); where A is an n-ary algebra. Next, we study a ternary example of these algebras. Finally, based on the construction of a family of ternary algebras defined by means of the Cayley-Dickson algebras, we present an example of a ternary D_{x,y}-derivation algebra (n-ary D_{x,y}-derivation algebras are the non-commutative version of n-ary Jordan algebras).
publishDate 2019
dc.date.none.fl_str_mv 2019
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/89485
http://hdl.handle.net/10316/89485
https://doi.org/10.1080/03081087.2018.1443426
url http://hdl.handle.net/10316/89485
https://doi.org/10.1080/03081087.2018.1443426
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://www.tandfonline.com/doi/abs/10.1080/03081087.2018.1443426?journalCode=glma20
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133992915566592