On a ternary generalization of Jordan algebras
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/89485 https://doi.org/10.1080/03081087.2018.1443426 |
Resumo: | Based on the relation between the notions of Lie triple systems and Jordan algebras, we introduce the n-ary Jordan algebras, an n-ary generalization of Jordan algebras obtained via the generalization of the following property [R_x; R_y] \in Der (A); where A is an n-ary algebra. Next, we study a ternary example of these algebras. Finally, based on the construction of a family of ternary algebras defined by means of the Cayley-Dickson algebras, we present an example of a ternary D_{x,y}-derivation algebra (n-ary D_{x,y}-derivation algebras are the non-commutative version of n-ary Jordan algebras). |
id |
RCAP_c27b29b8c9718b988cbcd48498d3a826 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/89485 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On a ternary generalization of Jordan algebrasJordan algebras; non-commutative Jordan algebras; derivations; n-ary algebras; Lie triple systems; generalized Lie algebras; Cayley–Dickson construction; TKK constructionBased on the relation between the notions of Lie triple systems and Jordan algebras, we introduce the n-ary Jordan algebras, an n-ary generalization of Jordan algebras obtained via the generalization of the following property [R_x; R_y] \in Der (A); where A is an n-ary algebra. Next, we study a ternary example of these algebras. Finally, based on the construction of a family of ternary algebras defined by means of the Cayley-Dickson algebras, we present an example of a ternary D_{x,y}-derivation algebra (n-ary D_{x,y}-derivation algebras are the non-commutative version of n-ary Jordan algebras).Taylor & Francis2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/89485http://hdl.handle.net/10316/89485https://doi.org/10.1080/03081087.2018.1443426enghttps://www.tandfonline.com/doi/abs/10.1080/03081087.2018.1443426?journalCode=glma20Kaygorodov, IvanPozhidaev, AlexanderSaraiva, Pauloinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-05-25T01:34:39Zoai:estudogeral.uc.pt:10316/89485Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:09:46.957790Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On a ternary generalization of Jordan algebras |
title |
On a ternary generalization of Jordan algebras |
spellingShingle |
On a ternary generalization of Jordan algebras Kaygorodov, Ivan Jordan algebras; non-commutative Jordan algebras; derivations; n-ary algebras; Lie triple systems; generalized Lie algebras; Cayley–Dickson construction; TKK construction |
title_short |
On a ternary generalization of Jordan algebras |
title_full |
On a ternary generalization of Jordan algebras |
title_fullStr |
On a ternary generalization of Jordan algebras |
title_full_unstemmed |
On a ternary generalization of Jordan algebras |
title_sort |
On a ternary generalization of Jordan algebras |
author |
Kaygorodov, Ivan |
author_facet |
Kaygorodov, Ivan Pozhidaev, Alexander Saraiva, Paulo |
author_role |
author |
author2 |
Pozhidaev, Alexander Saraiva, Paulo |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Kaygorodov, Ivan Pozhidaev, Alexander Saraiva, Paulo |
dc.subject.por.fl_str_mv |
Jordan algebras; non-commutative Jordan algebras; derivations; n-ary algebras; Lie triple systems; generalized Lie algebras; Cayley–Dickson construction; TKK construction |
topic |
Jordan algebras; non-commutative Jordan algebras; derivations; n-ary algebras; Lie triple systems; generalized Lie algebras; Cayley–Dickson construction; TKK construction |
description |
Based on the relation between the notions of Lie triple systems and Jordan algebras, we introduce the n-ary Jordan algebras, an n-ary generalization of Jordan algebras obtained via the generalization of the following property [R_x; R_y] \in Der (A); where A is an n-ary algebra. Next, we study a ternary example of these algebras. Finally, based on the construction of a family of ternary algebras defined by means of the Cayley-Dickson algebras, we present an example of a ternary D_{x,y}-derivation algebra (n-ary D_{x,y}-derivation algebras are the non-commutative version of n-ary Jordan algebras). |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/89485 http://hdl.handle.net/10316/89485 https://doi.org/10.1080/03081087.2018.1443426 |
url |
http://hdl.handle.net/10316/89485 https://doi.org/10.1080/03081087.2018.1443426 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://www.tandfonline.com/doi/abs/10.1080/03081087.2018.1443426?journalCode=glma20 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133992915566592 |